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Q: How much added sequestration does the ocean provide?

https://www.ipcc.ch/report/ar6/wg3/downloads/outreach/IPCC_AR6_WGIII_Factsheet_CDR.pdf

Ocean sediments, good candidate for CO2 storage? 


Large capacity + added sequestration from the ocean.
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Q: How long does water take to make contact with the surface?

Naive solution: simulate dye, remove 
at surface and log times of removal.Computationally 

prohibitive!

Our Efficient solution is to use  
Frozen Circulations 
Transport-Matrices  
Adjoint Propagators

Problems: 
- long simulations (1000’s of years) 
- repeat for every location  
              (~50’000 for 1°×1°)  
- repeat for every injection time

e.g., 2030s climatology

inject at surface and time step backwards

 

10’000’000 more efficient! 
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+ CSIRO archives

Monthly Transport Matrices
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Run on Gadi… Thanks NCI!
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Conclusions
• continental shelf sequestration <100 years


• abyssal plain sequestration ~1000 years 
and more when isolated from conveyor belt (e.g., North Pacific)


• Climate variability ~20% 
but huge (~100%) when members “bifurcate” (e.g., Weddell Sea)


• Climate warming (mostly) slows circulation, 
lengthens transit by ~30% 
but by up to ~100% if deep connections shut down (e.g., Weddell Sea)



What’s next?
• Specific to ACCESS-ESM1.5! Redo for more models 

• other mCDR techniques


• deoxygenation / carbon pump 

• deep-sea mining impacts 

characterise ocean transport in general in CMIP models (age, ventilation tracers, 
paleo tracers, time to reemergence, upstream exposure time, …)


Passive tracer spinup (Newton–Krylov + TM faster than AA!) 

Parameter optimisation (Wombat BGC?)


• <your_idea> or <your_funded_project>?

https://github.com/TMIP-code

TMIP 
Transport Matrix 
Intercomparison 
Project

with ACCESS1.3 PCO2 model in Pasquier et al. (2023)

explored with ACCESS1.3 in Pasquier et al. (2024a, 2024b)
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Anderson Acceleration (AA) for spinup
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Newton Krylov for mean water age

+1 year

+1 month

∂
∂t

Γ + T Γ = 1 G(Γt) ≡ Γt+1yr

Γt+Δt = (I + Δt Mt+Δt)−1 (Γt + Δt)

Solve F(Γ) ≡ G(Γ) − Γ = 0

with GMRES and preconditioner P ≡ − (Δt M)−1 − I
Bardin et al. (2014)
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TM vs AA age: Zonal Averages
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TM vs AA age: Successful Calibration



Newton Krylov for mean time to reemergence

Time

–1 year

–1 month

−
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G(Γ†

t ) ≡ Γ†
t−1yr
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t−Δt = (I + Δt M†

t−Δt)−1 (Γ†
t + Δt)

Solve F(Γ†) ≡ G(Γ†) − Γ† = 0

with GMRES and preconditioner P ≡ − (Δt M†)
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Bardin et al. (2014)
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