The sequestration efficiency of the deep ocean: Fast computations using transport matrices built from ACCESS-ESM1.5 archives

Benoît Pasquier, Richard J. Matear, Matthew A. Chamberlain, Tilo Ziehn, David K. Hutchinson, François W. Primeau, Yi Liu, and Ann Bardin

COSIMA WG meeting 2025

CDR is required to limit global warming to 1.5°C

CDR is required to limit warming to °1.5C. Particularly, CDR is needed to counterbalance emissions from difficult-todecarbonise sectors, such as industry, longdistance transportation, and agriculture.

Mitigation scenarios assume large volumes of future global CDR deployment compared to current volumes of deployment.

Ocean sediments, good candidate for CO₂ storage? Large capacity + added sequestration from the ocean. **Q: How much added sequestration does the ocean provide?**

Future deployment of CDR will require rapid and sustained upscaling.

https://www.ipcc.ch/report/ar6/wg3/downloads/outreach/IPCC_AR6_WGIII_Factsheet_CDR.pdf

Naive solution: simulate dye, remove at surface and log times of removal.

Naive solution: simulate dye, remove at surface and log times of removal.

- long simulations (1000's of years)
- repeat for every location (~50'000 for 1°×1°)
- repeat for every injection time

Naive solution: simulate dye, remove at surface and log times of removal.

- long simulations (1000's of years)
- repeat for every location (~50'000 for 1°×1°)
- repeat for every injection time

Our Efficient solution is to use Frozen Circulations e.g., 2030s climatology **Transport-Matrices** inject at surface and time step backwards **Adjoint Propagators**

Naive solution: simulate dye, remove at surface and log times of removal.

- long simulations (1000's of years)
- repeat for every location (~50'000 for 1°×1°)
- repeat for every injection time

Our Efficient solution is to use **Marchives Equation Marchives** Frozen Circulations e.g., 2030s climatology Conceptually simpler than transient **Transport-Matrices** inject at surface and time step backwards **Adjoint Propagators**

Naive solution: simulate dye, remove at surface and log times of removal.

Problems: - long simulations (1000's of years) - repeat for every location (~50'000 for 1°×1°) - repeat for every injection time

Our Efficient solution is to use **Marchives Equation Marchives** Frozen Circulations e.g., 2030s climatology Conceptually simpler than transient **Transport-Matrices I** Leverage Linear Algebra (200x speed up) inject at surface and time step backwards **Adjoint Propagators**

Naive solution: simulate dye, remove at surface and log times of removal.

Problems: - long simulations (1000's of years) - repeat for every location (~50'000 for 1°×1°)

- repeat for every injection time

Our Efficient solution is to use **Marchives Equation Marchives** Frozen Circulations e.g., 2030s climatology Conceptually simpler than transient **Transport-Matrices I** Leverage Linear Algebra (200x speed up) **1** tracer vs 50'000 inject at surface and time step backwards **Adjoint Propagators**

Naive solution: simulate dye, remove at surface and log times of removal.

- long simulations (1000's of years)
- repeat for every location (~50'000 for 1°×1°)
- repeat for every injection time

Our Efficient solution is to use **Marchives Equation Marchives** Frozen Circulations e.g., 2030s climatology Conceptually simpler than transient **Transport-Matrices I** Leverage Linear Algebra (200x speed up) **1** tracer vs 50'000 inject at surface and time step backwards **Adjoint Propagators**

Naive solution: simulate dye, remove at surface and log times of removal.

Problems: - long simulations (1000's of years) - repeat for every location

- (~50'000 for 1°×1°)
- repeat for every injection time

Transport matrix

Tracer equation

transport operator

Flux into surface \propto TTD

t_i t

Flux into surface \propto TTD

t

 t_{i}

Dirac injection in the surface:

Backwards in time

 $\mathbf{T}^{\dagger} = \mathbf{V}^{-1} \mathbf{T}^{\mathsf{T}} \mathbf{V}$

r

 $\mathscr{G}^{\dagger}(\boldsymbol{r},t,t_{\mathrm{f}})$

ACCESS-ESM1.5 CMIP6 archives + CSIRO archives

Monthly climatologies SSP370 2030s mass transport data

SSP370 2030s mass transport data

Chamberlain et al. (2019)

https://github.com/TMIP-code/OceanTransportMatrixBuilder.jl

- Monthly Transport Matrices

SSP370 2030s mass transport data

Chamberlain et al. (2019)

https://github.com/TMIP-code/OceanTransportMatrixBuilder.jl

https://github.com/TMIP-code/ACCESS-TMIP

- Monthly Transport Matrices

Chamberlain et al. (2019)

https://github.com/TMIP-code/OceanTransportMatrixBuilder.jl

https://github.com/TMIP-code/ACCESS-TMIP

Monthly Transport Matrices

Mean time to reemergence

For Climate variability

For Climate variability

For Climate variability

SSP370 2030s

SSP370 2030s

Repeat for 2090s

SSP370 2030s

Repeat for 2090s

SSP370 2030s

Run on Gadi... Thanks NCI!

Seafloor to Surface Transit-Time Distribution (TTD)

Seafloor to Surface Transit-Time Distribution (TTD)

The Sequestration Efficiency

Complement of the CDF of the TTD

2030s Seafloor Sequestration Efficiency (40 members)(yearly)

Climate Change Effect on Seafloor Sequestration Efficiency (40 members)(yearly)

2030s Characteristic Timescales of Reemergence (40 members)(yearly)

Climate Change Effect on Seafloor Reemergence Time (40 members)(yearly)

Conclusions

- continental shelf sequestration <100 years
- abyssal plain sequestration ~1000 years and more when isolated from conveyor belt (e.g., North Pacific)
- Climate variability ~20% but huge (~100%) when members "bifurcate" (e.g., Weddell Sea)
- Climate warming (mostly) slows circulation, lengthens transit by ~30% but by up to ~100% if deep connections shut down (e.g., Weddell Sea)

What's next?

- Specific to ACCESS-ESM1.5! Redo for more models
- other mCDR techniques
- deoxygenation / carbon pump
- deep-sea mining impacts
- $\langle \cdot \rangle$ paleo tracers, time to reemergence, upstream exposure time, ...)
- **Passive tracer spinup** (Newton–Krylov + TM faster than AA!)
- **Parameter optimisation** (Wombat BGC?)
- <your_idea> or <your_funded_project>?

TMIP Transport Matrix Intercomparison Project https://github.com/TMIP-code

explored with ACCESS1.3 in Pasquier et al. (2024a, 2024b)

characterise ocean transport in general in CMIP models (age, ventilation tracers,

with ACCESS1.3 PCO2 model in Pasquier et al. (2023)

Thousands of simulation years

Time

Thousands of simulation years

Time

Time

Time

age

Water

Time

Time

Newton Krylov for mean water age

Bardin et al. (2014)

Time

TM vs AA age: Zonal Slices

Pacific 170–180°W

TM vs AA age: Zonal Averages

TM vs AA age: Joint PDF

TM vs AA age: Successful Calibration

Time to reemergence

Time