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CDR is required to limit warming to “1.5C. -

Particularly, CDR is needed to counter- Mitigation scenarios assume

nalance emissions from difficult-to- large volumes of future global

decarbonise sectors, such as industry, long- CDR deployment compared to Future deployment of CDR will require
distance transportation, and agriculture. current volumes of deployment. rapid and sustained upscaling.

https://www.ipcc.ch/report/ar6/wg3/downloads/outreach/IPCC_AR6_WGIII_Factsheet_CDR.pdf

Ocean sediments, good candidate for CO2 storage?

Large capacity + added sequestration from the ocean.

Q: How much added sequestration does the ocean provide?
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Q: How long does water take to make contact with the surface?
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Q: How long does water take to make contact with the surface?

Naive solution: simulate dye, remove
surface layer at surface and log times of removal.
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- Problems:

- long simulations (1000’s of years)
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Our Efficient solution is to use
Frozen Circulations e.g., 2030s climatology
Transport-Matrices

- long simulations (1000’s of years)

- repeat for every location
(~50°000 for 1°x1°)

- repeat for every injection time

Adjoint Propagators Inject at surface and time step backwards
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Transport matrix

Tracer equation

tracer sum of sources
tendency transport and sinks
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oc \

transport operator

IS =u-V—-—V-RV

/ \

advection diffusivity tensor
resolved + param.



Transport matrix 3D field - column vector
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For Climate variability




For Climate change effect
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For Climate change effect

Repeat for 2090s

SSP370 2030s /\ SSP370 2090s




For Climate change effect

Repeat for 2090s

SSP370 2030s /\ SSP370 2090s

{ Framework |

{ Framework |

Run on Gadi... Thanks NCI!
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2030s Seafloor Sequestration Efficiency (40 members)(yearly)
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2030s Characteristic Timescales of Reemergence (40 members)(yearly)
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Climate Change Effect on Seafloor Reemergence Time (40 members)(yearly)
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Conclusions

continental shelf sequestration <100 years

abyssal plain sequestration ~1000 years
and more when isolated from conveyor belt (e.g., North Pacific)

Climate variability ~20%
but huge (~100%) when members “bifurcate” (e.g., Weddell Sea)

Climate warming (mostly) slows circulation,
lengthens transit by ~30%
but by up to ~100% if deep connections shut down (e.g., Weddell Sea)



What’s next? Transport Matix

Intercomparison

Project
e Specific to ACCESS-ESM1.5! Redo for more models https://github.com/TMIP-code

e other mCDR techniques
e deoxygenation / carbon pump

e deep-sea mining impacts

» characterise ocean transport in general in CMIP models (age, ventilation tracers,
paleo tracers, time to reemergence, upstream exposure time, ...)

» Passive tracer spinup (Newton-Krylov + TM faster than AA!)

., Parameter optimisation (Wombat BGC?)

e <your_idea> or <your_funded_project>?



Anderson Acceleration (AA) for spinup

Spun up when repeats itself

ol
u-VIL-V-KVIl =1 '
ot o ® O o ®
® ® ¢
O
O ¢ /
o} +1 year — slow convergence...
M ( O
I .
O
= .
o Thousands of simulation years

Time



Anderson Acceleration (AA) for spinup

Spun up when repeats itself

o
u-VIL-V-KVIl =1 '
ot . & & —O® 0 e e
@
O
O ¢ /

o} +1 year — slow convergence...
M ( O
@ —
§ ° Let G(I') =14y,

then, time stepping is like
fixed-point iteration:

Fk+1 — G(Fk)

o Thousands of simulation years

Time



Water age
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Anderson Acceleration (AA) for spinup
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Newton Krylov for mean water age
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TM vs AA age: Zonal Slices
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TM vs AA age: Zonal Averages
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TM vs AA age: Joint PDF
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TM vs AA age: Successful Calibration

1152 ©

960

4]
)
>
2 576
o 00

384 | : ‘ j:.--»'-.falll \ 080 L .. \

192 - 0.99

_ 4 10999
O l P 1
0 0.250 0.50 0.750 10 1.250 1.50

STD (relative to 0 = STD of AA age)

Y. — E— Y —

0.7 0.8 0.9 0.95 0.99 0.999 -200 -100 0 100 200
skill score bias (years)




Time to reemergence

Newton Krylov for mean time to reemergence
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