The ocean's carbon and oxygen cycles in future steady-state climate scenarios

Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, and Nathaniel L. Bindoff

Australian Government

Australian Research Council

DP210101650

UNIVERSITY of **TASMANIA**

PCO2biogeochemistry model

ACCESS-M steady ocean circulation model

No time stepping! No spinup!

Biological C uptake: -10% **RCP8.5**

Biological C uptake: -10% **RCP8.5** Nutrient supply × Temperature +21.6 +0.2 -0.4-0.1 92 -6.3 Temperature **RCP8.5** future (T only) Δβ Δλ α λα Δα Δα Δα ΔU Δβ λ Δβ Δλ Δβ

C export production: -25%

Regenerated C

Regenerated C: +70%!

Regenerated C: +70%!

33 PgC yr⁻¹

57 yr

Regenerated C: +70%!

33 PgC yr⁻¹ 25 PgC yr⁻¹

Slower circulation \Rightarrow longer residence time

RCP8.5

128 yr

Tracking preformed C

Novel concept of a Preformed C tracer!

Tracking preformed C

Novel concept of a Preformed C tracer!

167 PgC yr⁻¹

201 yr

PI

Tracking preformed C: shorter residence times!?

Novel concept of a **Preformed C tracer!**

295 PgC yr⁻¹

167 PgC yr-1

P

Strong deoxygenation

OUR

