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Introduction
The ocean’s nutrient cycles control global primary productivity

and the ocean’s biological carbon pump. The cycles of macro and

micronutrients are coupled through colimitation on biological up-

take and through the scavenging of micronutrients by sinking or-

ganic matter. Dissolved iron (dFe) is a key micronutrient because

of its fundamental role in limiting primary production.

We formulate an inverse model of the ocean’s coupled P, Si,

and Fe cycles embedded in a data-assimilated global circulation.

The biogeochemical parameters are optimized to minimize the

mismatch with observations. We improve on the Fe-cycle inverse

model of [3] and produce, for the first time, a family of data-

constrained state estimates of the coupled Fe–P–Si cycles for a

wide range of aeolian, hydrothermal, and sedimentary sources.

We address an important open question about the Fe cycle:

What are the relative efficiencies of the different iron sources in

supporting the world ocean’s export production? In addition to

presenting the first inverse model of the coupled Fe–P–Si cycles,

we address the following key scientific questions:

1 How well can the modelled dFe, PO4, and Si(OH)4
concentrations be fitted to observations for widely differing

iron sources?

2 How well constrained are the P and Si exports for widely

different iron sources?

3 What fractions of the P and Si exports are supported by the

different iron sources, and how do these fractions vary with

the iron-source strengths?

1. Model
The steady-state tracer equations for the concentrations of PO4,
Si(OH)4, and dFe (denoted by χP, χSi, and χFe) are

T χP �

∑
c
(SP

c − 1)Uc − γg(χP − χobs

P
) , (1)

T χSi � (SSi − 1)RSi:PUdia − γg(χSi − χobs

Si
) , (2)

T χFe �
∑

c
(SFe

c − 1)RFe:PUc

+ (Ss,POP − 1)JPOP + (Ss,bSi − 1)JbSi − Jdst
+ sA + sS + sH .

(3)

T is the advection-diffusion operator (transport matrix of [9]). Uc
is the P-uptake rate per unit volume by phytoplankton functional

class c. We model 3 classes: non-diatom small (< 2µm, c � sml),

non-diatom large (≥ 2µm, c � lrg), and diatoms (c � dia). Uc , 0
only in the model’s euphotic zone, i.e., above 73.4m (2 model lay-

ers). RSi:P
and RFe:P

are the stoichiometric uptake ratios. SP

c , SSi

c ,

andSFe

c model the biogenic transport and remineralization by class

c. JPOP, JbSi, and Jdst are the scavenging rates by POP, opal parti-

cles (bSi), and mineral dust. Ss,POP
and Ss,bSi

model the particle

transport of scavenged iron and its partial redissolution at depth.

sA, sS, and sH are the aeolian, sedimentary, and hydrothermal iron

sources. We solve (1)–(3) using a fast Newton solver.

The uptake rates are a function of temperature T , irradiance I,
and nutrient concentrations, and are calculated from phytoplank-

ton concentration, pc, and specific growth rate, µc, as

Uc � µc pc �
pmax

c
τc

eκT (FI ,c FN,c)2 , (4)

where τc is the timescale for growth, pmax

c is the phytoplankton

concentration under ideal conditions, and FI ,c and FN,c ∈ [0, 1)
represent light and nutrient limitation [2, 4].

The limitation of functional class c by nutrient i is a product of

Monod factors:

FN,c �
∏

i

χi

χi + k i
c
. (5)

The Fe:P uptake ratio is a simple Monod term as in [4]:

RFe:P
� RFe:P

0
χFe

χFe + kFe:P
, (6)

where RFe:P
0 is the maximal Fe:P uptake ratio. And the Si:P uptake

ratio is modelled as

RSi:P
� RSi

0
+

(
RSi

m
− RSi

0

) kFe

Si:P

χFe + kFe

Si:P

χSi
χSi + kSi

Si:P

, (7)

where the ratio involving χFe produces increased silicification

when iron is deficient, while the Monod term with χSi produces
increased silicification in silicon-replete environments.

To produce a family of 287 objectively-optimized state estimates,

we first set a number of unconstrainable parameters using litera-

ture values. We then optimize the remineralization profile using

simple submodels. We finally optimize the constrainable param-

eters using the full coupled model. Because there is no scientific

consensus on the Fe source strenghts (which varies by 2 orders of

magnitude), we then assign the Fe source strengths, and optimize

the scavenging parameters and RFe:P
0 . We finally re-optimize the

Fe source strengths.

2. Results
The model–observation mismatches for P, Si, and Fe:
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Figure 1: Joint distribution of the cost-weighted observed and modelled con-

centrations of PO4, Si(OH)4, and dFe. For PO4 and Si(OH)4, we used WOA13

observations. For dFe, we used the data compilation of [10] and the GEO-

TRACES IDP 2014 [7].

The cost function sums the volume-weighted mismatches, Ei �∫
(χi − χobs

i )2dV , for all state estimates:
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Figure 2: Total cost and RMS mismatch for the whole family of state estimates

as a function of Fe sources (black crosses indicate outliers).

The modelled P, Si, and Fe exports, Φi �
∑

c
∫

adzS i
c Ri:P

c Uc:
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Figure 3: Local export production maps for our typical state estimate and zonal

integrals (ZI, scaled for dFe) for whole family (grey) and typical state (black).

(a) P export in C units using C:P� 106 : 1 (blue ZI from [9]). (b) Si export (blue

ZI from [6]). (c) Iron export, with its zonal integrals expressed as a percentage

of the global iron export. Global exports (typical estimate and family range) are

indicated in each title.

The dFe partition according to source, χFe � χA

Fe
+ χS

Fe
+ χH

Fe
[5]:
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Figure 4: Estimates of the dFe concentration in each basin and globally (GBL).

Left: zonal averages of total dFe for the typical state and the corresponding hor-

izontally averaged profiles (grey for the whole family and black for the typical

state). Right: source-partitioned dFe profiles for each state (colour� fractional

aeolian source and black� typical state).

The iron-type-supported P exports, ΦP

k �
∑

c
∫

adzSP

c Uc (χk
Fe
/χFe):
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Figure 5: Maps of normalized P export supported by each iron type for the

typical state and its zonal averages (grey is whole family and black is typical

state).

The relative P export-support efficiencies, ePk � εPk/ε̃
P

k , where

εPk ≡ φ̂
P

k/σ̂k and ε̃Pk � (1 − φ̂P

k )/(1 − σ̂k):
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Figure 6: Percent global P export supported by each iron type vs the correspond-

ing fractional source. Superposed lines are least-squares fits to the theoretical

relationship with fixed relative export-support efficiencies, ePk .

3. Conclusions
• The relative simplicity of the biogeochemical model and the

matrix formulation afford highly efficient numerics.

Steady-state solutions are readily found using a Newton

solver, which permits objective optimization of the

biogeochemical parameters to minimize the mismatch with

the observations.

• Our estimates of the PO4 and Si(OH)4 concentrations closely
match the WOA13 observations with volume-weighted RMS

errors of 5% and 12% relative to the global mean (Fig. 1).

dFe has a larger RMS mismatch of ∼ 45% relative to the

global mean but the vertical dFe profiles for the Atlantic and

Southern Ocean generally lie within the observational

uncertainties (not shown, see [8]).

• We produced a family of state estimates with a wide range of

Fe source strengths. Each estimate fits the observations with

roughly the same fidelity (Fig. 2) because Fe sources are

compensated by optimally adjusted scavenging: The

available observed dFe are insufficient to constrain the

sources.

• The P and Si exports are well constrained, both in pattern and

magnitude (Fig. 3). Our P export estimates (in C units) of

9.5–11. PgCyr
−1

is ∼ 40% larger than [9] and closer in spatial

pattern to the satellite-based estimates of [1]. The Si export of

164.–177.Tmol Si yr
−1

overlaps with the estimates of [6].

• We partitioned dFe into its aeolian, sedimentary, and

hydrothermal components without perturbing the system

[5]. Variations in the one source are compensated by another

despite their different geographical patterns (Fig. 4). Iron

source–sink and source–source compensations suggest that

more dFe observations may not allow to constrain the Fe

sources, and that better direct quantification of the source

and scavenging processes themselves are needed.

• Each iron source supports P and Si exports with a distinct

geographic pattern (robust across the family, Fig. 5). Per

source-injected molecule, aeolian iron is most efficient, while

sedimentary and hydrothermal iron are less efficient, because

dFe from deeper sources is more likely to be scavenged en

route to the euphotic zone (Fig. 6). The relative

export-support efficiency of each iron type is robust across

our family of state estimates. Aeolian iron supports 3.1 ± 0.8
times more P export and 2.3 ± 0.5 times more Si export than

the other iron types. Sedimentary and hydrothermal iron are

respectively 2.3 ± 0.6 and 4. ± 2. times less efficient in

supporting P export, and 1.9 ± 0.5 and 2. ± 1. times less

efficient in supporting Si export, than the other iron types.

Our optimized model is ideally suited for investigating the re-

sponse of the global ocean ecosystem to a variety of biogeochem-

ical perturbations. In the future, we will report on the model’s

response to perturbations in the iron supply and on a more com-

prehensive analysis of the detailed workings of the iron cycle.

For all the details of this work, see [8].
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