
D
R
A
FT

THE F-1 ALGORITHM FOR EFFICIENT COMPUTATION OF THE1

HESSIAN MATRIX OF AN OBJECTIVE FUNCTION DEFINED2

IMPLICITLY BY THE SOLUTION OF A STEADY-STATE PROBLEM∗3

BENOÎT PASQUIER† AND FRANÇOIS PRIMEAU†4

Abstract. Steady-state systems of nonlinear partial differential equations (PDEs) are common5
in engineering and the biogeosciences. These systems are typically controlled by parameters that can6
be estimated efficiently using second-order optimization algorithms. However, computing the gradi-7
ent vector and Hessian matrix of a given objective function defined implicitly by the solution of large8
PDE systems is seldom economical. Here we present a fast and easy-to-use algorithm for computing9
the gradient and Hessian of an objective function implicitly constrained by a steady-state PDE sys-10
tem. We call the new algorithm, which is based on the use of hyperdual numbers, the F-1 algorithm,11
because it requires only one factorization of the constraint-equation Jacobian. Careful examination12
of the relationships that arise from differentiating the PDE system reveal analytical shortcuts that13
the F-1 algorithm leverages. We benchmark the F-1 algorithm against five numerical differentiation14
schemes in the context of optimizing a global steady-state model of the marine phosphorus cycle that15
depends explicitly on m = 6 parameters. In this context, the F-1 algorithm computes the Hessian 1616
to 100 times faster than other algorithms, allowing for the entire optimization procedure to be per-17
formed 4 to 26 times faster. This is because other algorithms require O(m) to O(m2) factorizations,18
which suggests even greater speedups for larger problems. To facilitate reproducibility and future19
benchmarks, all the code developed for this study was implemented as open-source Julia packages.20

Key word. Global, Ocean, Marine biogeochemistry, Biogeochemistry, Model, Modeling, In-21
verse, Inverse model, Optimization, Uncertainty, Sensitivity, Differential equations, Partial differen-22
tial equations, PDE, steady-state, Newton’s method, Factorization, Automatic differentiation, Al-23
gorithmic differentiation, Autodiff, AD, Finite differences, Complex-step, Dual numbers, Hyperdual24
numbers, Nutrients, Nutrient cycles, Biogeochemical cycles, gradient, Hessian, Jacobian, Julia, Open25
source26

AMS subject classifications. 15Axx, 15A06, 15A09, 15A23, 15A24, 15A29, 15A66, 15A69,27
15A99, 26B10, 26A24, 13P99, 90C53, 90C9028

1. Introduction. The geosciences are rich with problems involving spatial data29

that can be modeled using partial differential equations (PDEs). In cases where30

steady-state or time-mean fields are of specific interest, such problems can be ex-31

pressed generically as32

(1.1) F (x,p) = 0,33

where x is the model state vector comprising one or more discretized field variables34

and p is a vector of adjustable parameters (see, e.g., [22, 50, 11, 24, 25, 44]).35

A major modeling goal is then to find the value of x and p that are in the best36

possible agreement with available observational data while satisfying (1.1). Mathe-37

matically, this translates into the generic constrained optimization problem38

(1.2)

{
minimize

x,p
f(x,p)

subject to F (x,p) = 0,
39

where f(x,p) is some measure of how far the state and parameter vectors are from40

the data and/or some assumed prior values. Here, we restrict ourselves to the case41

∗Submitted to the the SIAM Journal of Scientific Computing for review on 2019-07-09.
Funding: This work was funded by the US Department of Energy grant DE-SC0016539 and

the National Science Foundation grant 1658380.
†Department of Earth System Science, University of California, Irvine, CA, United States

(pasquieb@uci.edu, fprimeau@uci.edu).

1

This manuscript is for review purposes only.

mailto:pasquieb@uci.edu
mailto:fprimeau@uci.edu


D
R
A
FT

2 B. PASQUIER AND F. PRIMEAU

where the solution to (1.1) defines x as an implicit function of p, which we denote by42

s(p), the steady-state solution. The problem defined by (1.2) is then equivalent to43

finding the minimum of the objective function defined by44

(1.3) f̂(p) ≡ f
(
s(p),p

)
.45

In a Bayesian formulation of the parameter estimation problem, f̂ would cor-46

respond to the negative logarithm of the posterior probability distribution. Solving47

p̂ = arg minp f̂(p) is then equivalent to finding the most probable parameter val-48

ues. Efficient algorithms for minimizing f̂(p) in multidimensional parameter spaces49

make use of the gradient, ∇f̂(p), and Hessian, ∇2f̂(p), to select the most promising50

search directions. Furthermore, in parameter estimation problems, the Hessian ma-51

trix, ∇2f̂(p), is of direct interest because its inverse evaluated at p̂ can be used to52

construct a useful approximation to the error covariance matrix for the parameters,53

which provides a useful summary of the parameter uncertainties (e.g., [51, 52, 55]).54

The present study focuses on PDE problems with discretization schemes that55

lead to a sparse Jacobian matrix, ∇xF (x,p), that can be factored and stored in56

computer memory. For such problems Newton’s method can be used to efficiently57

solve (1.1). Here, we show how to take advantage of this fact together with the58

application of recently developed hyperdual numbers (e.g., [12, 14, 13]) to simplify59

and greatly reduce the computational cost of evaluating ∇f̂(p) and ∇2f̂(p).60

The typical procedure for minimizing the objective function defined by (1.3) in-61

volves two nested iterative processes, as illustrated in Figure 1. The inner solver62

finds the steady-state solution, s(p), by iteratively updating the state, x, until the63

norm of the state function, F (x,p), is sufficiently small. This is indicated by the64

“F (x,p) ≈ 0?” condition, which determines when the inner-solver loop terminates.65

On the outside, the optimizer iteratively searches for a minimum of f̂ . The opti-66

mizer loop updates the parameters, p, and terminates when the norm of the gradi-67

ent of the objective function, ∇f̂(p), is sufficiently small, which is indicated by the68

“∇f̂(p) ≈ 0?” condition. The outer optimizer problem, like the inner solver problem,69

can be solved using Newton’s method provided the search direction,70

(1.4) ∆p ≡ −
[
∇2f̂(p)

]−1
∇f̂(p),71

can be computed.72

However, computing the derivatives required to evaluate ∇f̂(p) and ∇2f̂(p) an-73

alytically is laborious, prone to errors, and potentially computationally expensive —74

see (2.5) for example, which involves five large third-order tensors. The evaluation of75

the gradient vector and Hessian matrix is therefore typically done using finite differ-76

ences applied directly to f̂ . However, finite-difference approximations for computing77

the Hessian matrix is also computationally expensive when m is moderately large and78

suffers from both round-off and truncation errors [29], which can have detrimental79

effects on the convergence rate of the optimizer.80

A recently developed alternative to finite differences, which does not suffer from81

round-off or truncation errors is the application of dual numbers to efficiently compute82

numerical derivatives (see, e.g., [37]). Dual numbers, like complex numbers, extend83

the real numbers by introducing a new unit, denoted ε, but with ε2 ≡ 0 rather than84

i2 = −1 as is the case for the imaginary unit. A more detailed description of dual85

numbers is given in subsection SM4.2 and references therein. Implementations of dual86

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 3

Start

x,p

F (x,p) ≈ 0?

∇f̂(p) ≈ 0?

End

true

true

Inner solver
updates x

false

Optimizer
updates p

false

Fig. 1. Schematic diagram representing the optimization procedure. Starting at the top with
an initial choice for the state, x, and parameters, p, the procedure goes through two nested iterative
loops. The outer loop is the optimizer, which iterates on p until it lies at the minimum of the
objective function, f̂ (i.e., until ∇f̂(p) ≈ 0). Nested inside the optimizer is the inner solver, which
is executed for each update of p. The inner-solver loop updates x until it approximately satisfies the
steady-state condition, F (x,p) ≈ 0, with is equivalent to x = s(p). We note that the conditional
statements to terminate the loops are approximations because of finite precision.

numbers for efficiently and accurately computing derivatives are available for several87

scientific computing languages (see, e.g., [12, 14, 13, 56, 48, 37]).88

To see how to compute the gradient using dual numbers let ej be the jth vector89

of the natural basis of Rm, i.e., a vector of m zeros except for a 1 in the jth entry.90

(j = 1, . . . ,m indexes the m dimensions of the parameter space.) Then, the Taylor91

expansion of the objective function at p in the εej direction is given by92

(1.5) f̂(p+ εej) = f̂(p) + ε∇f̂(p) ej ,93

where we express the gradient, ∇f̂(p), as a row vector, so that the product ∇f̂(p) ej94

yields its scalar jth entry. Thus, each entry of the gradient can be computed by95

evaluating the objective function with the dual-valued parameters p+ εej and taking96

the dual part of the result. Rearranging each entry into a row vector gives a formula97

to compute the gradient in m dual-valued evaluations of the objective function,98

(1.6) ∇f̂(p) = D



f̂(p+ εe1)

f̂(p+ εe2)
...

f̂(p+ εem)


T .99

Note that the dual-step algorithm cannot be naively applied recursively to com-100

pute second-order derivatives because ε2 = 0 ensures that terms of order two (and101

above) vanish in the Taylor expansion. To compute second-order derivatives, Fike102

and Alonso [12] have developed hyperdual numbers. Two distinct hyperdual units,103

This manuscript is for review purposes only.



D
R
A
FT

4 B. PASQUIER AND F. PRIMEAU

ε1 and ε2, are introduced, such that ε21 = ε22 = 0 but such that ε1ε2 6= 0. Just104

like the dual unit, the hyperdual units play the role of infinitesimally small num-105

bers. However, because they are independent and do not cancel each other out, they106

can propagate infinitesimal perturbations in two directions simultaneously. For more107

details on hyperdual numbers, see subsection SM4.3 and references therein.108

By definition, hyperdual-valued Taylor expansions only extend to second order109

terms. In particular, for any pair (ej , ek) of directions in parameter space (with j110

and k spanning the dimensions 1 to m of the parameter space), we have that111

(1.7) f̂(p+ ε1ej + ε2ek) = f̂(p) + ε1∇f̂(p)ej + ε2∇f̂(p)ek + ε1ε2e
T
j∇2f̂(p)ek,112

where the product eTj ∇2f̂(p) ek yields the entry in the jth row and the kth column113

of the Hessian matrix and where the product ∇f̂(p) ej yields the jth entry of the114

gradient. Thus, one can compute the Hessian matrix with m(m + 1)/2 hyperdual-115

valued evaluations of the objective function. Specifically, denoting the hyperdual116

parameters by pjk ≡ p+ ε1ej + ε2ek, the Hessian is given by117

(1.8) ∇2f̂(p) = H



f̂(p11) f̂(p12) · · · f̂(p1m)

f̂(p12) f̂(p22) · · · f̂(p2m)
...

...
. . .

...

f̂(p1m) f̂(p2m) · · · f̂(pmm)


 ,118

where H(x) is the ε1ε2 coefficient of x.119

Although they provide an attractive alternative to the fully analytical approach,120

the numerical algorithms listed above come at a price. Indeed, in practice, these nu-121

merical methods suffer large computational costs on top of potential implementation122

pitfalls. Computing the gradient, ∇f̂(p), via (1.6) seems straightforward and compu-123

tationally efficient at face value but we note that each evaluation of f̂ will generate124

a call to the inner solver. That is, each call will need to find the dual-valued steady-125

state solution, s(p+ εej), thus forcing the inner solver, which uses Newton’s method,126

to perform at least one computationally-expensive factorization of each dual-valued127

matrix ∇xF (x,p+ εej) and potentially multiple such factorizations. Similarly, com-128

puting the Hessian, ∇2f̂(p), via (1.8) will generate at a minimum m(m + 1)/2 calls129

to the inner solver to find the hyperdual-valued steady-state solution, s(pjk), thus130

forcing the inner solver to perform an even larger number of expensive factorizations131

of hyperdual-valued ∇xF (x,pjk) matrices. The additional calls to the inner solver132

also expose the user to potential implementation pitfalls if for some reason the solver133

does not handle non-real numbers properly. This would be the case for example if the134

inner solver invoked operations with non-real numbers internally in the first place,135

or did not check for convergence of non-real parts. (These pitfalls are discussed in136

section 6.)137

Optimization problems defined generically in the form of (1.2) are common in138

physical sciences and engineering and practical solutions have been investigated and139

documented. For example, for aerospace engineering, Rumpfkeil and Mavriplis [49]140

suggested an efficient solution to a similar optimization problem to improve airfoil141

aerodynamism. They showed that taking the adjoint of the derivatives of their steady-142

state problem combined with algorithmic differentiation could lead to an optimally-143

efficient algorithm for computing the Hessian matrix. Here, in a similar approach,144

we show that a careful refactoring of the algorithm for computing ∇f̂ and ∇2f̂ using145

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 5

an adjoint formulation and hyperdual numbers can avoid all the calls to the inner146

solver. This leads to an algorithm, which we call F-1, for computing the gradient and147

Hessian that is simultaneously easy-to-use, fast, and accurate. The name, F-1, of the148

new algorithm relates to the fact that it is fast and to the fact that it requires only 1149

factorization of the large Jacobian matrix for the PDE constraint equation150

By using dual and hyperdual numbers, the accuracies of the gradient and Hessian151

computed by the F-1 algorithm are close to machine precision. Furthermore, the F-1152

algorithm requires only a single factorization of the real-valued matrix A ≡ ∇xF (s,p)153

followed by m+ 1 forward and back substitutions to compute both the gradient and154

Hessian — the minimum possible. (We use s instead of s(p) for brevity throughout.)155

Additionally, it does not require any call to the inner solver, avoiding the pitfalls of156

autodifferentiating through an iterative solver. Finally, the F-1 algorithm requires no157

analytical derivatives with respect to p, making it simple to use.158

We emphasize that an important requirement for the F-1 algorithm to be applica-159

ble is that it must be possible to create, store, and factorize the Jacobian matrix, A.160

In other words, a generalization of the F-1 algorithm to problems for which the state is161

too large for the Jacobian to be factored or problems with millions of parameters is be-162

yond the scope of this study. To illustrate the efficiency of the F-1 algorithm, we apply163

it to the optimization of a global marine phosphorus-cycling model. (In this model,164

described in detail in subsection 3.2, the Jacobian, A, is a sparse 400 320 × 400 320165

matrix with 3 800 846 non-zero entries, and p is of length m = 6.)166

Global nutrient-cycling models play a key role in our understanding of the Earth167

system. Photosynthetic microbes living in the sunlit upper ocean continuously remove168

dissolved carbon dioxide (CO2) and nutrients from surface waters to produce organic169

matter that gets exported to depth in the form of sinking particles. The downward170

flux of these particles supplies the carbon and energy that sustain life in the dark171

subsurface waters. The respiration at depth of the exported organic matter particles172

also maintains a vertical gradient of CO2 in the ocean against the tendency of mixing173

and overturning circulation to homogenize the concentration of dissolved constituents.174

As such, this “biological carbon pump” [54, 46, 1] sets the partitioning of CO2 be-175

tween the atmosphere and ocean with important consequences for the climate of the176

Earth. The strength of the biological pump is strongly regulated by the availability177

of nutrients such as phosphate (PO4).178

The biogeochemical mechanisms that control the cycling of nutrients, which in-179

volve hundreds of thousants of species, are complex. Additionally, the ocean is hard180

to sample with sufficient spatial and temporal coverage, hindering our capacity to181

understand and quantify marine processes. Oceanographers therefore often rely on182

mathematical models with biogeochemical parameterizations that are calibrated by183

requiring the model to reproduce available observations. Estimating these parameters184

through objective optimization is a task whose importance is increasingly recognized185

in marine biogeochemistry (see, e.g., [24, 25, 15, 8, 10, 44]) but whose implementation186

remains a formidable challenge for state-of-the-art Earth System Models.187

We demonstrate the performance of the F-1 algorithm in the context of optimizing188

m = 6 parameters of a global marine biogeochemistry model of the phosphorus cycle,189

for which the state has size n = 400 320. We benchmark the F-1 algorithm against190

other numerical differentiation algorithms by recording computation times in the same191

conditions (i.e., for the same state function, F , and objective function, f̂ , with the192

same parameters, p, on the same computer, and so forth). We show that the F-1193

algorithm affords significant speedups. In fact, we show that the F-1 algorithm can194

compute gradient and Hessian at virtually no added cost relative to a fully analytical195

This manuscript is for review purposes only.



D
R
A
FT

6 B. PASQUIER AND F. PRIMEAU

approach, as has been suggested in [49].196

In the phosphorus-cycling-model optimization context, the F-1 algorithm com-197

putes the Hessian matrix from 16 to 100 times faster than other algorithms, affording198

4- to 26-fold computational speedups overall. Based on simple time-complexity argu-199

ments, we expect the computational cost benefits of the F-1 algorithm to scale with200

the size of the problem, because current state-of-the-art numerical differentiation al-201

gorithms require O(m) to O(m2) factorizations, compared to a single factorization202

for the F-1 algorithm. In fact, for fixed n, we expect that computing the Hessian203

using the F-1 algorithm would be 3 orders of magnitude faster than finite-differences204

for m ∼ 20 parameters, and 5 orders of magnitude for m ∼ 200 parameters.205

We start by describing the F-1 algorithm and its derivation in section 2, where206

we also give a short description of six other numerical differentiation algorithms. We207

describe our implementation in section 3 and show the results of the optimization of208

the phosphorus-cycling model and of the benchmarks of the F-1 algorithm in section 4.209

We conclude in section 5 and further discuss in section 6.210

2. Theory.211

2.1. Analytical formulas. The gradient, ∇f̂(p), which we express as a row212

vector, is obtained by differentiating (1.3) via the chain rule:213

(2.1) ∇f̂(p)︸ ︷︷ ︸
1×m

= ∇xf(s,p)︸ ︷︷ ︸
1×n

∇s(p)︸ ︷︷ ︸
n×m

+∇pf(s,p)︸ ︷︷ ︸
1×m

,214

where ∇xf and ∇pf are the partial derivatives of f(x,p) with respect to x and p,215

respectively, and ∇s(p) is the derivative of s with respect to p. The matrix size of216

each derivative, which defines the row/column orientation of vectors and matrices,217

is indicated below each term. Here, strictly speaking, the row vector ∇f̂(p) is the218

transpose of the gradient of f̂(p), which we usually take to be an m×1 column vector.219

However, we refer to ∇f̂(p) as the gradient (of the objective function) throughout220

for simplicity. The ∇s(p) term in (2.1) is obtained by differentiating the steady-state221

equation, (1.1), and gives222

(2.2) A︸︷︷︸
n×n

∇s(p)︸ ︷︷ ︸
n×m

+∇pF (s,p)︸ ︷︷ ︸
n×m

= 0,223

where ∇pF is the partial derivative of F with respect to p, and the Jacobian matrix224

A = ∇xF (s,p) is the partial derivative of F (x,p) with respect to x evaluated at225

x = s(p) and p. A closed formula for the gradient, ∇f̂(p) is then obtained by226

inserting the solution of (2.2) into (2.1), giving227

(2.3) ∇f̂(p)︸ ︷︷ ︸
1×m

= −∇xf(s,p)︸ ︷︷ ︸
1×n

A−1︸︷︷︸
n×n

∇pF (s,p)︸ ︷︷ ︸
n×m

+∇pf(s,p)︸ ︷︷ ︸
1×n

.228

The computation time for evaluating (2.3) strongly depends on the size of the229

state, n, through the need to solve for the n× 1 vector s and because of the need to230

evaluate and invert the n × n matrix A. We note, however, that once the factors of231

A are available, they can be used to evaluate the first term on the right hand side for232

relatively little additional cost by first evaluating A−T∇xf(s,p)T, which can be done233

with a single forward and backward substitution, and then multiplying its transpose234

by ∇pF (s,p), rather than first evaluating A−1∇pF (s,p), which would consists of235

solving m linear systems instead of one.236

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 7

We now turn to the Hessian, for which an analytical expression is obtained by237

differentiating (2.1). Using the compact tensor-product notation of Manton [27], we238

get239

∇2f̂(p) = ∇xxf(s,p) (∇s⊗∇s) +∇xpf(s,p) (∇s⊗ Ip)

+∇pxf(s,p) (Ip ⊗∇s) +∇ppf(s,p) (Ip ⊗ Ip)

+∇xf(s,p)∇2s,

(2.4)240

where we have omitted the p argument of ∇s(p) and ∇2s(p) for brevity. Here we241

give a brief explanation on how to interpret the tensor-product notation, and refer the242

interested reader to [27] for more details. In (2.4), the tensor products can be under-243

stood merely as separating the arguments for each combination of directions, which244

second-order derivatives are applied to. For example, evaluating ∇xpf(s,p)(∇s⊗ Ip)245

is done by applying the n×m tensor, ∇xpf(s,p), to the combined direction (∇s⊗Ip).246

That is, one must contract the first dimension of ∇xpf(s,p) on the first dimension of247

∇s (which is a n ×m matrix) and its second dimension on the first dimension of Ip248

(which is the m ×m identity). Effectively, ∇xpf(s,p)(∇s ⊗ Ip) results in a m ×m249

matrix, which can be understood as the matrix product ∇sT∇xpf(s,p).250

Note that the evaluation of the expression on the right-hand side of (2.4) makes251

use of the second derivative of the steady-state solution, i.e., the n ×m ×m tensor,252

∇2s(p). It is obtained by differentiating (2.2), which yields253

0 = ∇xxF (s,p) (∇s⊗∇s) +∇xpF (s,p) (∇s⊗ Ip)

+∇pxF (s,p) (Ip ⊗∇s) +∇ppF (s,p) (Ip ⊗ Ip)

+ A∇2s.

(2.5)254

In (2.5), note that every term in the sum is a n × m × m tensor (none of which255

can be represented in matrix form, justifying our use of the tensor notation of [27]).256

For example, ∇xpF (s,p) (∇s⊗ Ip) is the double contraction of the second dimension257

of the n × n × m tensor ∇xpF (s,p) on the first dimension of ∇s and of its third258

dimension on the first dimension of Ip. Also note that A∇2s must be understood259

as A multiplying each of the m2 column vectors of dimension n× 1 contained in the260

n×m×m tensor ∇2s.261

In principle, (2.5), can be substituted into the adjoint of (2.4) to compute the262

Hessian matrix by solving a single linear system involving the Jacobian matrix A.263

Thus, at least one factorization of A and one forward and back substitutions are264

required to compute the Hessian with a closed analytical formula. However, numeri-265

cally computing each term in (2.5) is tedious at best. Instead, a better solution is to266

compute the premultiplied terms arising from inserting (2.5) into (2.4) so as to avoid267

computing the third-order tensors, as suggested by [49].268

2.2. The F-1 algorithm. For the gradient, the F-1 algorithm first uses (2.2) to269

compute ∇s(p), which requires m forward and back substitutions and the factoriza-270

tion of A. Once computed, ∇s(p) is then inserted into (2.1) to evaluate the gradient.271

Importantly, the partial derivatives of F and f with respect to the parameters, p, are272

computed numerically using dual numbers. Specifically, ∇pf(s,p) and ∇pF (s,p) are273

computed in m dual-valued evaluations, via274

(2.6) ∇pf(s,p) = D
[
f(s,p+ εe1), . . . , f(s,p+ εem)

]
275

and276

(2.7) ∇pF (s,p) = D
[
F (s,p+ εe1), . . . ,F (s,p+ εem)

]
,277

This manuscript is for review purposes only.



D
R
A
FT

8 B. PASQUIER AND F. PRIMEAU

respectively.278

For the Hessian, the F-1 algorithm uses hyperdual numbers, but exploits a com-279

bination of (2.4) and (2.5) that provides an optimally efficient analytical shortcut,280

which reduces the cost of computing the Hessian down to a single forward and back281

substitution. For pjk = p + ε1ej + ε2ek, let xjk ≡ s + ε1∇s ej + ε2∇s ek denote a282

carefully chosen corresponding hyperdual-valued state. (We have dropped the p de-283

pendency on s(p) and on ∇s(p) for brevity again.) Then, the entries of the Hessian284

matrix of the objective function are given by285

(2.8) [∇2f̂(p)]jk = H
[
f(xjk,pjk)

]
− H

[
F (xjk,pjk)T

]
A−T∇xf(s,p)T,286

where H(x) is the ε1ε2 coefficient of x. (A formal derivation of (2.8) is given later in287

this section.) With (2.8), a single forward and back substitution for A−T∇xf(s,p)T288

is required for all the entries of the Hessian because it is independent of j and k.289

Additionally, because the Hessian is symmetric, only m(m + 1)/2 hyperdual-valued290

evaluations of f and F are necessary.291

Hence, the F-1 algorithm computes the gradient in a single factorization of A,292

m forward and back substitutions, and O(m) function evaluations, and computes the293

Hessian in a single forward and back substitution and O(m2) function evaluations.294

Additionally, the F-1 algorithm requires only f , F , ∇xf , and ∇xF from the user.295

We note that although the F-1 algorithm requires the user to supply the Jacobian,296

∇xF , as well as ∇xf , these may sometimes be easily derived analytically or computed297

numerically, as is the case for our phosphorus-cycling model (details in section SM2).298

Thus in some cases, with little extra work, the F-1 algorithm provides an automatic299

differentiation tool that requires no derivatives from the user — only F and f .300

We note that (2.8) is similar to Equation (13) in the work of Rumpfkeil and301

Mavriplis [49], who suggest to premultiply the third-order tensors in (2.5) and use302

an algorithmic differention tool to compute the directional derivatives for each (j, k)303

direction. Here, we accomplish the same thing by simply evaluating f and F with304

appropriately chosen hyperdual-valued arguments. Thus, the F-1 algorithm provides305

an easy-to-implement and similarly optimally-efficient alternative.306

We now derive (2.8). The hyperdual-valued Taylor expansion of f at (s,p) in the307

(ε1∇s ej + ε2∇s ek, ε1ej + ε2ek) direction gives exactly the cross terms of (2.4) as its308

ε1ε2 coefficient. That is,309

H
[
f(xjk,pjk)

]
= eTj ∇sT∇xxf(s,p)∇s ek + eTj ∇sT∇xpf(s,p) ek

+ eTj ∇pxf(s,p)∇s ek + eTj ∇ppf(s,p) ek,
(2.9)310

where H(x) is the ε1ε2 coefficient of x. Mathematically, H
[
f(xjk,pjk)

]
is simply311

the second-order directional derivative of f at (s,p) in the combined (∇s ej , ej) and312

(∇s ek, ek) directions.313

The entry-wise version of (2.4) can be rearranged and expressed as314

(2.10) [∇2f̂(p)]jk = H
[
f(xjk,pjk)

]
+∇xf(s,p) [∇2s]jk,315

where [∇2s]jk is the n × 1 column vector given by the second partial derivative of316

s(p) with respect to the jth and kth parameters (which contracts on the 1 × n row317

vector multiplied to its left, ∇xf(s,p), as per the tensor notation of [27] resulting in318

a scalar entry).319

Similarly, the hyperdual-valued Taylor expansion of F , also taken at (s,p) and320

in the same (ε1∇s ej + ε2∇s ek, ε1ej + ε2ek) direction, gives exactly the cross terms321

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 9

of (2.5) as its ε1ε2 coefficient. That is,322

H
[
F (xjk,pjk)

]
= eTj ∇sT∇xxF (s,p)∇s ek + eTj ∇sT∇xpF (s,p) ek

+ eTj ∇pxF (s,p)∇s ek + eTj ∇ppF (s,p) ek,
(2.11)323

which can be interpreted as the second-order directional derivative of F at (s,p) in324

the combined (∇s ej , ej) and (∇s ek, ek) directions. Thus, the entry-wise version of325

(2.5) can be recast as326

(2.12) [∇2s]jk = −A−1 H
[
F (xjk,pjk)

]
.327

Inserting (2.12) into (2.10) and taking the adjoint yields (2.8).328

3. Implementation. We chose the Julia language [3] for the implementation of329

this study because it affords, among many other features, (i) state-of-the-art factoriza-330

tion of sparse matrices and solving of sparse linear systems using the standard-library331

LinearAlgebra, SparseArrays, and SuiteSparse packages [5, 6], (ii) state-of-the-art op-332

timizations using the Optim package [30, 31], and (iii) efficient implementations of333

the dual- and hyperdual-number types using the DualNumbers and HyperDualNum-334

bers packages. We emphasize that different implementations are possible, so that335

one could use another scientific computing language or other packages. However, this336

combined choice of Julia and relevant packages allows for a simple yet fast, modern,337

and open-source implementation of the algorithms benchmarked in this study.338

3.1. Algorithms for the gradient and Hessian.339

3.1.1. F-1 algorithm. The Julia implementation of the F-1 algorithm is pub-340

licly available online as the F1Method package [42], which was developed for this study341

and used in the optimization benchmarks of section 4. Thanks to the expressivity and342

syntax of the Julia language, the code for the entire F1Method package requires just343

a few lines of code that closely match (2.1), (2.2), and (2.6)–(2.8). The F1Method344

package essentially defines five functions, which are called to update the steady-state345

solution, update a memory cache, and compute the objective, its gradient, and its346

Hessian, respectively.347

The memory cache, denoted mem, used by the F1Method package, is an instance of348

a custom Julia type, Mem, which is used to store the results of reusable computations,349

i.e., the steady-state solution, s(p), the factors of the Jacobian, A, the derivatives350

∇s(p) and∇xf(s,p), and the corresponding parameter values, p. When calling either351

of the objective, the gradient, or the Hessian functions, the contents of mem are only352

updated if the parameters, p, are modified.353

3.1.2. Other algorithms. We chose to benchmark the F-1 algorithm against354

five algorithms that apply their respective numerical scheme to either the analytical355

gradient function, ∇f̂ , as defined by (2.3), or directly to the objective function, f̂ , as356

defined by (1.3), taken as black boxes. The algorithms that use the analytical gradi-357

ent formula are (i) the FD1 algorithm, which applies a second-order finite-difference358

scheme, (ii) the CSD algorithm, which applies the complex-step scheme, and (iii) the359

DUAL algorithm, which applies the dual-step scheme. The algorithms that directly360

use the objective function to compute both gradient and Hessian are (iv) the FD2361

algorithm, which applies second-order finite-difference schemes for both the gradi-362

ent and Hessian, and (v) the HYPER algorithm, which applies the dual-step scheme363

for the gradient and the hyperdual-step scheme for the Hessian. These algorithms,364

This manuscript is for review purposes only.

https://github.com/JuliaLang/julia/tree/master/stdlib/LinearAlgebra
https://github.com/JuliaLang/julia/tree/master/stdlib/SparseArrays
https://github.com/JuliaLang/julia/tree/master/stdlib/SuiteSparse
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/JuliaDiff/DualNumbers.jl
https://github.com/JuliaDiff/HyperDualNumbers.jl
https://github.com/JuliaDiff/HyperDualNumbers.jl
https://github.com/JuliaDiff/HyperDualNumbers.jl
https://github.com/briochemc/F1Method.jl
https://github.com/briochemc/F1Method.jl


D
R
A
FT

10 B. PASQUIER AND F. PRIMEAU

together with the F-1 algorithm, are collected in Table 1, with a link to their Julia365

implementation and a short description with an estimate of their computational costs.366

Overall, we thus benchmark six algorithms that are run in the same conditions and367

on the same machine, allowing for a fair set of comparisons.368

Table 1
Collection of the algorithms benchmarked in this study. The FD1, CSD, and DUAL algorithms

compute the Hessian, ∇2f̂(p), by numerically differentiating the gradient, ∇f̂ , using the analytical
formula, (2.3). They require the user to supply f , F , ∇xf , ∇xF , ∇pf , and ∇pF . The F-1 algorithm
requires f , F , ∇xf , and ∇xF . The FD2 and HYPER algorithms compute both gradient and Hessian
directly from the objective function and thus require only f̂ . The “cost” column shows the number of
factorizations as a function of the number of parameters, m. Names in the first column are clickable
URLs that point to their implementation in GitHub.

Algorithm Cost Definition

F-1 O(1) The algorithm presented in this study. Computes ∇f̂(p) and ∇2f̂(p)
using the analytical shortcuts described in subsection 2.2. Overall requires
1 factorization and m+ 1 forward and back substitutions.

FD1 O(m) Central finite-differences algorithm. Computes ∇2f̂(p) as the Jacobian

of ∇f̂ . Executes 2m calls to ∇f̂ (i.e., 2m factorizations) and to the inner
solver (about 1 iteration each time). Overall requires about 4m additional
factorizations.

CSD O(m) Complex-step differentiation algorithm. Computes ∇2f̂(p) by evaluating

∇f̂ with complex parameters. Executes m calls to the complex ∇f̂ (i.e.,
m complex factorizations) and to the inner solver (2 iterations each time).
Overall requires about 2m additional complex factorizations. (Note that
complex-valued operations can be more expensive than real-valued ones.)

DUAL O(m) Dual-step differentiation algorithm. Computes ∇2f̂(p) by evaluating ∇f̂
with dual parameters. Executes m calls to the dual ∇f̂ and to the inner
solver (2 iterations each time). Overall requires about 2m additional dual
factorizations. (Note the DUAL method applies (SM5.1) for solving dual-
valued linear systems).

FD2 O(m2) Second-order finite-differences algorithm. Computes ∇f̂(p) and ∇2f̂(p)

directly from f̂ . Executes 2m calls to the inner solver for the gradient
and 2m2 for the Hessian. Overall requires about 2m2 + 2m additional
factorizations. (Note that the low accuracy of the FD2 algorithm slows
the convergence of the optimizer.)

HYPER O(m2) Dual- and Hyperdual-step differentiation algorithm. Computes ∇f̂(p)

and ∇2f̂(p) by evaluating f̂ with dual-valued and hyperdual parameters,
respectively. Executes m calls to the inner solver with dual parameters
(2 iterations each time), and m(m + 1)/2 calls with hyperdual-valued
parameters (3 iterations each time). Overall requires about m additional
dual factorizations and m(m + 1)/2 additional hyperdual factorizations.
(Note that the HYPER algorithm applies (SM5.1) and (SM5.2) for dual
and hyperdual linear systems.)

Importantly, we note that the CSD, DUAL, and HYPER algorithms invoke the369

inner solver with non-real number types. Thus, the inner solver must be able to check370

the convergence of the imaginary, dual, and hyperdual parts. In practice, the solver371

that we use applies the Shamanskii method, a quasi-Newton method that computes372

Newton steps [19, 20]. We thus add a conditional statement on the relative size of373

the non-real parts of the Newton step for the inner-solver loop to terminate.374

Additionally, for the CSD, DUAL, and HYPER algorithms, the inner-solver New-375

ton steps require solving complex-valued, dual-valued, or hyperdual-valued linear sys-376

tems. While UMFPACK [5], which is the C package called by Julia’s SuiteSparse377

package [6] for the LU factorization of unsymmetric sparse matrices (like A in our378

phosphorus-cycling model), can handle complex numbers, it cannot deal with dual or379

This manuscript is for review purposes only.

https://github.com/briochemc/F1Method.jl/blob/master/src/F1Method.jl
https://github.com/briochemc/FastBGCParameterOptimization/blob/master/src/other_methods/FD1_method.jl
https://github.com/briochemc/FastBGCParameterOptimization/blob/master/src/other_methods/CSD_method.jl
https://github.com/briochemc/FastBGCParameterOptimization/blob/master/src/other_methods/DUAL_method.jl
https://github.com/briochemc/FastBGCParameterOptimization/blob/master/src/other_methods/FD2_method.jl
https://github.com/briochemc/FastBGCParameterOptimization/blob/master/src/other_methods/HYPER_method.jl
https://github.com/JuliaLang/julia/tree/master/stdlib/SuiteSparse


D
R
A
FT

THE F-1 ALGORITHM 11

hyperdual valued number types. Thus an important advantage of the F-1 algorithm in380

this regard is that despite using dual and hyperdual numbers, the F-1 algorithm does381

not require the solution to any dual-valued or hyperdual-valued linear systems. For382

the DUAL and HYPER algorithms — specifically, for the inner solver to handle dual-383

valued and hyperdual-valued factorizations and forward and back substitutions — we384

developed two Julia packages, DualMatrixTools [39] and HyperDualMatrixTools [40].385

These packages afford efficient factorization of dual and hyperdual sparse matrices, as386

well as solving dual and hyperdual linear systems with a minimum number of forward387

and back substitutions. Both packages rely on analytical identities for the inverse of388

dual-valued and hyperdual-valued matrices that are derived in section SM5.389

3.2. Phosphorus cycling model. To generate the global marine phosphorus390

cycling model, we use the AIBECS package (for Algebraic Implicit Biogeochemical391

Elemental Cycling System, [41]), which was developed in parallel to this study. In392

the AIBECS, steady-state problems are built as objects of the SteadyStateProblem393

type as defined by the DiffEqBase package [45] in Julia. The steady-state solution is394

computed via a state-of-the-art quasi-Newton algorithm implementing the Shamanskii395

method, derived from the work of [19, 20] and coded inside the AIBECS. We reiterate396

that the solver invoked by the AIBECS has been carefully designed to handle real-,397

complex-, dual-, and hyperdual-valued state and parameters, and integrates the Dual-398

MatrixTools [39] and HyperDualMatrixTools [40] packages for dual- and hyperdual-399

valued factorizations and forward and back substitutions of sparse linear systems.400

Our phosphorus-cycling model consists of two marine tracers, dissolved inorganic401

phosphorus (DIP), i.e., phosphate, and particulate organic phosphorus (POP). DIP is402

transported by water currents and turbulent eddies, and is taken up by phytoplank-403

ton in the euphotic layer (where light is available for photosynthesis to occur) and404

converted to sinking POP. As it sinks, POP is remineralized into DIP. The sequence405

of uptake, sinking, and remineralization, provides the downward transport mechanism406

(the biological pump [54, 46, 1]). The system is in steady state when the circulation,407

which brings nutrients back to the surface, balances the biological pump. The model408

only explicitly tracks DIP and POP, thus the state of the system is entirely deter-409

mined by the concentration fields of DIP and POP, denoted by xDIP(r) and xPOP(r)410

at location r.411

The evolution of the system is determined by the coupled mass-conservation equa-412

tions for DIP and POP. They are is given by413

(3.1)

{
(∂t +∇r · [u−K∇r])xDIP = −U(xDIP) +R(xPOP)

(∂t +∇r ·w)xPOP = +U(xDIP)−R(xPOP)
,414

where ∇r is the classical three-dimensional gradient operator. (We have ommitted the415

r dependency of the DIP and POP fields for brevity.) Equation (3.1) defines a system416

of two coupled PDEs where we assume no-flux (Neumann) boundary conditions at417

the land–ocean and atmosphere–ocean interfaces. On the left hand sides of (3.1), u is418

the 3D water velocity vector field, K is the 3× 3 eddy-diffusivity tensor, and w is the419

particulate sinking velocity. The flux divergence of DIP due to the ocean’s currents420

and eddies is thus represented by the action of the advective–eddy-diffusive transport421

operator, ∇r · [u−K∇r], on xDIP.422

The flux divergence of sinking POP is represented by the action of∇r ·w on xPOP.423

The remineralization profile of POP is assumed to follow a power-law with depth after424

the observations of Martin [28]. Following [23], this is equivalent to assuming that425

This manuscript is for review purposes only.

https://github.com/briochemc/DualMatrixTools.jl
https://github.com/briochemc/HyperDualMatrixTools.jl
https://github.com/briochemc/AIBECS.jl
https://github.com/JuliaDiffEq/DiffEqBase.jl
https://github.com/briochemc/DualMatrixTools.jl
https://github.com/briochemc/DualMatrixTools.jl
https://github.com/briochemc/DualMatrixTools.jl
https://github.com/briochemc/HyperDualMatrixTools.jl


D
R
A
FT

12 B. PASQUIER AND F. PRIMEAU

Table 2
Parameters for the global marine phosphorus-cycling model with their prior and posterior means.

Prior Posterior
Symbol Description mean mean Unit
xgeo Mean DIP concentration 2.17 2.12 mmol m−3

k Half-saturation constant (Michaelis-Menten) 10.00 6.62 µmol m−3

w0 Sinking velocity at surface 1.00 0.64 m d−1

w′ Vertical gradient of sinking velocity 0.22 0.13 d−1

κ Dissolution rate constant (POP to DIP) 0.19 0.19 d−1

τ Maximum uptake rate timescale 30.00 236.52 d

the magnitude of the sinking velocity, w, increases linearly with depth, an approach426

we adopt here, such that w = w′z+w0, where w′ and w0 are optimizable parameters.427

On the right hand sides of (3.1), U andR are the local uptake and remineralization428

rates, respectively. The specific phosphate uptake by phytoplankton in the euphotic429

layer is modeled according to a simple Monod term [32] with maximum set by the430

timescale τ and half-saturation rate constant k, and the POP remineralization is431

modeled after a first order reaction depending only on the POP concentration. Hence,432

U and R are defined by433

(3.2)

 U(xDIP) ≡ xDIP

τ

xDIP

xDIP + k
where z ≤ z0

R(xPOP) ≡ κxPOP

,434

where τ , k, and κ are optimizable parameters. (For our discrete model grid, the depth435

of the bottom of the euphotic layer, z0, lies at the bottom of the second layer, i.e., at436

about 73 m, below which U ≡ 0.)437

Because (3.1) does not contain external sources and sinks to the system, the438

global means are not constrained and could be chosen arbitrarily (see, e.g., [25]).439

We prescribe the global mean phosphate concentration by slowly restoring the DIP440

concentration everywhere to a mean value, xgeo, with a timescale of τgeo = 1 Myr441

that is larger than the typical timescale for a tracer to be homogeneously mixed in442

the ocean. Thus, in practice, (xgeo − xDIP)/τgeo is added to the right hand side of443

the DIP equation in (3.1), where xgeo is an optimizable parameter. We note that444

estimating the value of xgeo is of interest because the total inventory of DIP in the445

ocean, which is uncertain, is given by xgeo multiplied by the total volume of the ocean.446

The m = 6 optimizable parameters are collected in Table 2.447

The continuous equations in (3.1) are discretized onto a 3D grid of the ocean.448

Specifically, the steady-state version of (3.1) is recast into (1.1) by rearranging the449

3D concentration fields of DIP and POP into a state vector x =

[
xDIP

xPOP

]
and by450

replacing the linear operators for the flux divergences by large sparse matrices. For the451

advective–diffusive transport operator, we use the Ocean Circulation Inverse Model452

(OCIM1, [9, 7]), which defines the 3D grid of the ocean. With two tracers and the453

200 160 boxes of the OCIM1 grid, the state vector, x, has length n = 400 320. (More454

details on creating the discrete model and on OCIM1 are given in section SM1.)455

For the optimization, we define the objective function as the sum of the squared456

mismatch of the modeled state against observations and the posterior parameters457

against their prior mean. Specifically, the objective function is defined by458

(3.3) f(x,p) ≡ ωx
2
δxTΩxδx+

ωp
2
δλTΩλδλ,459

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 13

where ωx and ωp are hyper parameters that control the relative weights of the state460

and the parameters, respectively. In (3.3), δx is the difference between the modeled461

and observed DIP concentrations, where the observations are from the World Ocean462

Atlas (WOA18, [16, 43]). The diagonal matrix Ωx is taken as the inverse of the463

covariance matrix from regridding the WOA18 data onto the OCIM1 grid. For δλ,464

assuming prior log-normal distributions for the parameters, we use δλ ≡ log(p)− µ,465

where µ is the prior mean in logarithmic space. In practice, we feed λ = log(p) to the466

optimizer instead of p so that the parameters remain positive throughout. (We note467

that while our parameters are necessarily positive, they need not be positive in general468

and in such a case one would forgo the logarithmic transformation.) The diagonal469

matrix Ωλ is taken as the inverse of the prior covariance matrix in logarithmic space.470

(The non-logarithmic prior variances of the parameters are prescribed as the square471

of their non-logarithmic prior means.)472

3.3. Optimizer. For the optimization, we use the Trust-Region Newton algo-473

rithm of Julia’s Optim package [30, 31], which we use to optimize the parameters in474

logarithmic space. For the initial choice of parameters, we chose their prior means as475

collected in Table 2. The optimizer is deemed to have converged when the norm of476

the gradient of the objective function is less than 10−8. The initial state is chosen to477

be equal to xgeo everywhere. Accurate measurements of computation times for the478

benchmarks are performed with the BenchmarkTools and TimerOutputs packages.479

4. Results.480

4.1. Optimized model. The prior values of the parameters, which we use as481

the initial guess in the optimization, are given in Table 2, along with the posterior482

values (i.e., the optimized values). In our phosphorus-cycling model, at the start of the483

optimization, for the first steady-state solution, s0, such that F (s0,p0) = 0, the DIP484

field has a large mismatch with observations, with a root-mean-square error (RMSE)485

relative to the mean observed DIP of about 41 %. Our careful choice of the weights ωx486

and ωp ensures that the optimization effectively reduces the mismatch of the modeled487

state, i.e., the first term of (3.3), such that, at the end of the optimization, the RMSE488

of the modeled DIP field of the optimal steady-state solution, s(p̂), for the optimal489

parameters p̂, is of only about 6 %. Figure 2 shows a number of diagnostics of the490

DIP field of this optimized steady-state solution.491

The DIP field of the optimized solution is shown at a depth of about 919 m in492

Figure 2a. For the same depth, the relative mismatch with observations is shown493

in Figure 2b, revealing the mismatch range of approximately ±20 %. Most of the494

mismatch lies within ±5 % although there are some significant positive biases in the495

Arctic and negative biases at low-latitudes.496

In order to investigate the mismatch at different depths, Figure 2c shows the497

horizontally-averaged DIP concentrations of the optimized solutions and of the ob-498

servations for each of the Atlantic (ATL), Pacific (PAC), and Indian (IND) basins.499

The excellent fit shows that the optimized model captures the global vertical gradi-500

ents, which quantify the strength of the biological pump, remarkably well. This is501

confirmed by Figure 2d, which allows us to evaluate the DIP mismatch at every loca-502

tion by showing the cost-weighed cumulative joint probability density function of the503

modeled and observed DIP fields. The joint distribution, which is concentrated on504

the 1 : 1 line, shows that the optimized model strongly agrees with the observations505

over the entire ocean.506

We emphasize that the phosphorus-cycling model we use is simplistic in the sense507

This manuscript is for review purposes only.

https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/KristofferC/TimerOutputs.jl


D
R
A
FT

14 B. PASQUIER AND F. PRIMEAU

180E 120W 60W 060E 120E
80S
60S
40S
20S

0
20N
40N
60N
80N

(a) Modeled DIP at 919m depth

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

DI
P 

[m
m

ol
 m

³]

180E 120W 60W 060E 120E
80S
60S
40S
20S

0
20N
40N
60N
80N

(b) DIP mismatch at 919m depth

25
20
15
10
5

0
5
10
15
20
25

DI
P 

/ D
IP

 [%
]

0 1 2

0

1000

2000

3000

4000

5000

de
pt

h 
[m

]

ATL

0 1 2
DIP [mmol m ³]

(c) Ocean-basin mean DIP depth profiles

mod
obs

PAC

0 1 2

IND

0 1 2 3
observed DIP [mmol m ³]

0

1

2

3

m
od

el
ed

 D
IP

 [m
m

ol
 m

³]

(d) Modeled observed DIP joint PDF

5
15
25
35
45
55
65
75
85
95

pe
rc

en
til

e

Fig. 2. (a) Modeled DIP at about 919 m depth. (b) Relative mismatch between modeled DIP and
observations at the same depth as (a). (c) Horizontally averaged (volume-weighted) concentrations of
the modeled and observed DIP for the Atlantic (ATL), Pacific (PAC), and Indian (IND) oceans. (d)
Volume- and inverse-variance-weighted cumulative joint probability density function of the modeled
and observed DIP. (i% of the data lies outside of the contour of the ith percentile.)

that it does not contain any information on light availability or other nutrient limi-508

tations, which are important controls on the distribution of DIP. Hence, the quality509

of the fit of the optimized steady-state solution to observations is remarkably good.510

4.2. Benchmarks. We now compare the computation times afforded by using511

the F-1 algorithm against the other algorithms collected in Table 1 in the context of512

optimizing our global marine phosphorus-cycling model. We run the entire optimiza-513

tion procedure as illustrated in Figure 1. (Details of the implementation, such as the514

initial state and parameters, are described in section 3.)515

Figure 3 shows the convergence rate of the optimization as the norm of the gra-516

dient, ‖∇f̂(p)‖, versus computation time. Recall that the gradient, ∇f̂(p), must be517

equal to zero where the parameters are optimal. For all the algorithms, convergence is518

achieved in 9 iterations of the optimizer, except in the case of the FD2 algorithm, for519

which 10 iterations are needed. Using the FD2 algorithm requires more optimizer-loop520

iterations because both its gradient and Hessian are inaccurate. However, an accurate521

Hessian is not as important as an accurate gradient [18], so that the optimization run522

using the FD1 algorithm also converges in 9 iterations despite an inaccurate Hessian.523

The optimization using the F-1 algorithm converges in about 7 min and is, by far,524

the fastest. Using the DUAL, FD1, and CSD algorithms, convergence is achieved in525

about 28 min, 40 min and 47 min, respectively. The HYPER algorithm converges in526

almost 2 h while the FD2 algorithm takes almost 3 h. The F-1 algorithm is about 24527

times faster than the FD2 algorithm, which is the most common numerical differen-528

tiation algorithm.529

We note that each optimization run includes unavoidable computations, regardless530

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 15

0 2000 4000 6000 8000 10000
Computation ti e (seconds)

10(12
10(11
10(10
10(9
10(8
10(7
10(6
10(5
10(4
10(3
10(2
10(1
100

Gr
ad
ie
nt
 n
or
 

F-
1

DU
AL FD

1
CS

D

HY
PE
R

FD
2

Fig. 3. Convergence for all the algorithms from Table 1 quantified by the gradient norm,
‖∇f̂(p)‖, which is zero at the minimum, versus computation time. The algorithm is indicated
at the end of each curve. The fastest algorithm is the F-1 algorithm (red star). Other Hessian-
only computing algorithms (DUAL, FD1, and CSD) are shown in green, and gradient-and-Hessian-
computing algorithms (HYPER and FD2) are shown in purple. The horizontal gray line indicates

the tolerance of the optimizer, which terminates when ‖∇f̂(p)‖ ≤ 10−8.

of the algorithm used. For instance, every time the (real-valued) parameters, p, are531

updated by the optimizer, a non-negligible fraction of the computation time is spent532

finding the corresponding steady-state solution, s(p), by invoking the inner solver.533

Below, we partition the computation time for the entire optimization into the time534

spent for the the gradient and Hessian. This allows to further untangle the differences535

in performance for each algorithm.536

Figure 4 shows the partition of the time spent computing the gradient (in gray)537

and the Hessian (purple) during the same optimization runs as for Figure 3. In538

optimization problems, most of the time is usually spent computing the highest-order539

derivative, i.e., the Hessian in our context. This is true of all the algorithms except540

the F-1 algorithm. In fact, the optimization run using the F-1 algorithm is the only541

case where the time spent computing the Hessian is smaller than for computing the542

gradient.543

Importantly, the cost of computing the Hessian only by the F-1 algorithm is spec-544

tacularly low. Specifically, the F-1 algorithm is about 16 times, 24 times, and 32545

times faster than the DUAL, FD1, and CSD algorithms, for computing the Hessian.546

Furthermore, based on the number of factorizations of these algorithms, which scales547

like O(m), one should expect these performance ratios to roughly scale with the num-548

ber of parameters, m. (Recall that m = 6 in our benchmarks.) For example, one549

would reasonably expect speedups of about two orders of magnitude with m = 25550

parameters, and of about three orders of magnitude with m = 250. This is remark-551

able, considering the F-1 algorithm only requires the partials ∇xF and ∇xf from the552

user, compared to the DUAL, FD1, and CSD algorithms, which are all state-of-the-553

art (although naive) applications of numerical differentiation, and which additionally554

require the analytical formula for ∇pF and ∇pf . We note however that for large m,555

the cost of function evaluations for the F-1 algorithm, which scales like O(m2), may556

become predominant.557

This manuscript is for review purposes only.



D
R
A
FT

16 B. PASQUIER AND F. PRIMEAU

0 2000 4000 6000 8000 10000
Computation time (seconds)

FD2

HYPER

CSD

FD1

DUAL

F-1

M
et
ho

d

gradient
Hessian

Fig. 4. Cumulated computation times for the entire optimization run for all the algorithms.
The computation time for the gradient, ∇f̂ , and the Hessian, ∇2f̂ , are indicated in gray and purple,
respectively. (Computation times for the objective function are negligible in the optimization context
— see details in section SM3.)

A fairer comparison is against the HYPER and FD2 algorithms. Normalized by558

the number of calls (which is greater for the FD2 algorithm), the F-1 algorithm is559

effectively 76 times faster than the HYPER algorithm, and 100 times faster than560

the FD2 algorithm, for computing the Hessian. This is also spectacular, even more561

so when considering that the number of factorizations required by the HYPER and562

FD2 algorithms scales as O(m2). In fact, one should expect the F-1 algorithm to be563

about 3 orders of magnitude faster than the HYPER and FD2 algorithms for m ∼ 20564

parameters, and 5 orders of magnitude faster for m ∼ 200.565

5. Conclusions. We presented a computationally efficient method, the F-1 al-566

gorithm, to numerically evaluate the gradient and Hessian of an objective function,567

f̂(p), which quantifies a model’s skill (its ability to match observations) as a function568

of its parameters, p. The algorithm is applicable to steady-state problems represented569

by a system of discretized nonlinear PDEs, F (x,p) = 0, for which the steady-state570

solution, x = s(p), can be efficiently computed using a Newton-type solver. Addition-571

ally, the F-1 algorithm requires that the Jacobian matrix of the problem, ∇xF (x,p),572

can be created, stored, and factored. Requiring minimal input from the user, the573

F-1 algorithm performs significantly better than other state-of-the-art differentiation574

algorithms.575

The F-1 algorithm relies on existing numerical differentiation schemes that are576

often-overlooked, even in advanced scientific applications. These techniques are based577

on the concepts of dual numbers and hyperdual numbers, which allow numerical578

differentiation of first and second derivatives, respectively, with machine-precision579

accuracy (see, e.g., [12, 14, 13, 37]). In addition to providing increased accuracy,580

using dual and hyperdual numbers is essential for the F-1 algorithm to be both fast581

and easy to implement.582

While it builds on existing autodifferentiation tools [12, 14, 13, 37] and concepts583

[49], the F-1 algorithm elegantly combines them to leverage analytical shortcuts that584

we derive in this study. These shortcuts eliminate expensive calculations that are585

unavoidable when differentiating a black-box steady-state solver. In particular, they586

avoid redundant factorizations of the Jacobian. Specifically, the F-1 algorithm com-587

putes both gradient and Hessian in a single factorization, O(m) forward and back588

substitutions, and O(m2) inexpensive function evaluations. Because factorizations589

are typically computationally expensive, the single-factorization feature of the F-1590

algorithm affords large computational savings.591

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 17

Naturally, the computational costs of computing gradients and Hessians depend592

on multiple variables, including the structure of the model itself. While we do not593

make any definitive statement on how the time complexity depends on this structure,594

it is reasonable to assume that it predominantly depends on the sparsity pattern of595

the Jacobian given by ∇xF . Furthermore, it is also reasonable to assume that com-596

putational costs scale as a function of the number of state variables and the number597

of parameters, i.e., as a function of n and m. However, the algorithms benchmarked598

in this study mainly differ by the number of factorizations they require, which is599

essentially a function of m only. Thus, throughout, we qualitatively estimated the600

expected computational costs as a function of m to explain the effective differences601

in performance and to extrapolate our performance estimates to problems of different602

sizes.603

From our experience, the computational costs depend primarily on the number604

of factorizations, secondarily on the number of forward and back substitutions, and605

tertiarily on the number of function evaluations. Because the FD1, CSD, and DUAL606

algorithms apply a numerical differentiation scheme to the gradient, they require607

O(m) factorizations, forward and back substitutions, and function evaluations. Being608

applied to the objective function, the HYPER and FD2 algorithms are more expen-609

sive, requiring O(m2) factorizations, forward and back substitutions, and function610

evaluations. Furthermore, the computational costs of each of these algorithms likely611

scale with the size of the state, n. Based on these considerations alone, the F-1 al-612

gorithm, which already outperforms the other algorithms by a large margin (in the613

context of our global marine phosphorus-cycling model), should outperform the other614

algorithms even more for larger problems, i.e., for larger m and n.615

We demonstrated the computational performance of the F-1 algorithm by bench-616

marking it against five other state-of-the-art numerical differentiation algorithms (the617

DUAL, FD1, CSD, HYPER, and FD2 algorithms) in the context of optimizing a global618

marine phosphorus-cycling model, embedded in a global steady-state data-assimilated619

ocean circulation. The performance of the F-1 algorithm benefits from being used in620

the context of an optimization, during which previous computations, such as that621

of the factors of the Jacobian matrix, A, can be reused. Overall, optimizing these622

m = 6 parameters takes about 7 minutes with the F-1 algorithm, against 28 to 47623

minutes using the DUAL, CSD, or FD1 algorithms, about 2 hours using the HYPER624

algorithm, and almost 3 hours using the FD2 algorithm.625

We further investigated performance by recording the time spent computing the626

gradient and Hessian. In particular, we found that for computing the Hessian only,627

the F-1 algorithm is about 16 to 32 times faster than the DUAL, CSD, and FD1 algo-628

rithms, which have access to the analytical gradient. Furthermore, the F-1 algorithm629

is 76 and 100 times faster than the HYPER and FD2 algorithms, respectively, for630

only m = 6 parameters.631

We extrapolated our results to different problem sizes (different m) based on632

qualitative algorithmic complexity arguments. Assuming computation times scale633

primarily with the number of factorizations, we find that the performance of the F-1634

algorithm would be amplified for larger problems. In particular, we expect the F-1635

algorithm to be about 2 orders of magnitude faster than the DUAL, CSD, and FD1636

algorithms with m = 25 parameters, and 3 orders of magnitude faster with m = 250.637

Furthermore, we expect the F-1 algorithm to be about 3 and 5 orders of magnitude638

faster than the HYPER and FD2 algorithms with m = 20 and m = 200, respectively.639

In summary, we have presented an optimally efficient algorithm for computing the640

gradient and Hessian of the objective function for problems defined implicitly by the641

This manuscript is for review purposes only.



D
R
A
FT

18 B. PASQUIER AND F. PRIMEAU

steady-state solution of a system of discretized nonlinear PDEs. Our algorithm out-642

performs other state-of-the art algorithms for numerical differentiation, spectacularly643

so in the context of optimization. This is because classical numerical differentia-644

tion methods invoke nested iterative algorithms as black boxes, effectively repeating645

redundant computations, which incur significant computational costs. Instead, our646

algorithm leverages analytical shortcuts that are not available with naive black-box647

approaches. The performance gains likely scale with the size, n, of the system of648

PDEs, and with the number, m, of parameters, such that larger models, e.g., with649

finer resolution or more detailed mechanisms, would benefit even more from our al-650

gorithm than the benchmarks presented in this study.651

The F-1 algorithm is ideally suited to a number of geoscientific model optimiza-652

tions, provided the models can be represented by a steady-state PDE system of which653

the Jacobian can be stored and factored. However, the F-1 algorithm could potentially654

be extended to a larger scope of problems: (i) For very large m, where the optimizer655

does not create the full Hessian matrix but instead uses a matrix-free approach (i.e.,656

only evaluates matrix–vector products). This is the case when one wishes to optimize657

a 3D field with a large number of entries, rather than a few scalar parameters. (ii) For658

very large n, where the inner solver similarly does not create the Jacobian matrix A,659

but only evaluates matrix–vector products, e.g., using a Newton–Krylov type of solver660

(as in, e.g., [26, 49]). Other avenues of research include exploring potentially faster661

strategies for constrained optimization problems, for which the solver is not nested662

inside the optimizer, allowing for updates of the state, x, outside of the manifod of663

steady-state solutions (i.e., not satisfying the steady-state condition at every update664

of the parameters, p) [38]. Exploring the potential generalization of the F-1 algorithm665

to non-steady problems, as in [49] is also a promising research direction. Finally, the666

question remains whether the F-1 algorithm is applicable to problems that can lever-667

age a distributed structure. In the case where the state vector can be separated into668

chunks that the solver can update in parallel, the computation times would be set669

by the sizes of the submatrices of the Jacobian now separated into smaller blocks. A670

parrallel solver and F-1 algorithm could be combined, e.g., in the offline optimization671

of much larger models than the phosphorus-cycling model presented here [2]. Such672

models are common in global marine biogeochemistry, e.g., in order to simulate a673

large number of marine tracers, like the Biogeochemical Elemental Cycling (BEC)674

model [33, 35, 34].675

6. Discussion. Although our approach applies to a vast range of steady-state676

models defined through the implicit solution of a discretized system of nonlinear PDEs,677

it does not apply to all optimization problems of that form. Specifically, we focused678

on the cases where one is interested in computing the Hessian, with a particular679

focus on optimization algorithms that use quasi-Newton’s methods (see, e.g., [53]).680

However, we should point out that there are different algorithms that can be used681

to minimize f̂ that do not require the Hessian matrix. For example, some require682

only evaluations of the objective function, like the Simulated Annealing (e.g., [21])683

and Nelder-Mead [36] algorithms. Others, like the Broyden-Fletcher-Goldfarb-Shanno684

(e.g., [38]), the gradient descent [4], and the conjugate gradient (e.g., [17]) algorithms,685

require evaluations of the gradient. It might be the case that the problem at hand is686

not suitable for a Newton-like method for the optimization algorithm, in which case687

the F-1 algorithm would not be needed.688

Because it does not invoke the inner solver to compute derivatives, the F-1 algo-689

rithm avoids a number of implementation pitfalls that all other available algorithms690

This manuscript is for review purposes only.



D
R
A
FT

THE F-1 ALGORITHM 19

fall into. First, the F-1 algorithm allows for inner solvers that use non-real opera-691

tions. For example, if the inner solver used the complex-step algorithm to compute692

the Jacobian, A = ∇xF (x,p), then the CSD algorithm could not be naively applied693

to compute the Hessian matrix because of pertubration confusion. Similarly, if the694

inner solver used the dual-step algorithm to compute the Jacobian, then the DUAL695

and HYPER algorithms would not work either. We note that it is possible in theory696

to carefully chose the size of the complex, dual, or hyperdual steps so that the CSD,697

DUAL, or HYPER algorithms work with an inner solver that uses non-real operations698

internally. However, we do not recommend such an approach because it comes at the699

risk of failing silently. We also note that perturbation confusion can be avoided by700

carerul autodifferentiation implementations [48, 47].701

Second, the F-1 algorithm avoids having to carefully chose the step sizes. This is702

particularly important in the case of finite-difference methods (e.g., FD1 and FD2),703

for which if the step size h is too small, the inner-solver loop may not execute a single704

iteration, potentially causing large errors. In our implementation, an optimal choice705

for h was about [p]j/104 for the FD1 algorithm, and [p]j/102 for the non-diagonal706

terms of the Hessian for the FD2 algorithm, as can be seen in the code, accessible707

from the URLs in Table 1. ([p]j denotes the jth optimizable parameter value.) Such708

a large relative step is likely the reason for the slower convergence (in terms of number709

of optimizer iterations) of the FD2 algorithm.710

Third, the F-1 algorithm avoids having to carefully chose the tolerances of the711

iterative algorithms. In the case of the DUAL, CSD, and HYPER algorithms, an712

additional tolerance for each non-real part must be added to the inner solver, as713

detailed in section SM6, and the choice of said tolerance will matter. Although one714

may get away with forgetting to set the non-real tolerances, in this case the choice of715

the tolerance on the real part will determine when the inner loop terminates and may716

cause large errors.717

Fourth, the F-1 algorithm does not need an inner solver that can handle complex,718

dual, or hyper-valued parameter or state inputs. In contrast, this is the case for719

the CSD, DUAL, and HYPER algorithms. In order for these algorithms to work,720

the inner-solver Newton steps go through solving complex-, dual-, and hyperdual-721

valued linear systems. As mentioned in subsection 3.1.2, the calls to underlying722

UMFPACK allow for complex-valued linear systems, but fails on dual- and hyperdual-723

valued systems. These failures compelled us to develop the DualMatrixTools and724

HyperDualMatrixTools packages specifically designed to overcome this likely common725

shortcoming: there is no guarantee that dual or hyperdual-valued numbers will be726

handled correctly by underlying package that solves linear systems.727

Naturally, one should always avoid repeating expensive computations. This is728

what is accomplished by the memory cache in the implementation of the F-1 algo-729

rithm, which stores, e.g., the factors of A, for multiple subsequent forward and back730

substitutions. While the other algorithms do not store all the information that the731

F-1 algorithm stores, they still keep the real-valued steady-state solution, s(p), in732

memory. A common strategy in computer sciences that would benefit the other algo-733

rithms is memoization of the factorization function, such that the factors of A would734

be computed only once, just like for the F-1 algorithm. However, while this seems735

like a good strategy at face value, it turns out that there is numerical noise as the736

state, xl, gets close to the theoretical steady-state solution, s(p). That is, the fac-737

tors of A would be updated with a high probability at every update of either the738

state or the parameters, regardless of how small the change is. Additionally, storing739

a large number of factors of a large sparse matrix would likely cause memory issues.740

This manuscript is for review purposes only.

https://github.com/briochemc/DualMatrixTools.jl
https://github.com/briochemc/HyperDualMatrixTools.jl


D
R
A
FT

20 B. PASQUIER AND F. PRIMEAU

In comparison, by leveraging exact analytical shortcuts, the F-1 algorithm provides741

a finely-tuned storage-and-reuse approach that avoids redundant computations in an742

optimal way.743

Acknowledgments. FP and BP acknowledge funding from DOE grant DE-744

SC0016539 and NSF grant 1658380. The computations were performed using the745

Linux computational cluster Katana supported by the Faculty of Science, University746

of New South Wales, Australia.747

REFERENCES748

[1] D. E. Archer, G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert, M. Tobis, and749
R. Jacob, Atmospheric pCO2 sensitivity to the biological pump in the ocean, Global Bio-750
geochem. Cycles, 14 (2000), pp. 1219–1230, https://doi.org/10.1029/1999GB001216.751

[2] A. Bardin, F. Primeau, and K. Lindsay, An offline implicit solver for simulating prebomb752
radiocarbon, Ocean Modelling, 73 (2014), pp. 45–58, https://doi.org/10.1016/j.ocemod.753
2013.09.008.754

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, Julia: A fresh approach to numerical755
computing, SIAM Review, 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671.756

[4] A. Cauchy, Méthode générale pour la résolution des systemes d’équations simultanées, Comp.757
Rend. Sci. Paris, 25 (1847), pp. 536–538.758

[5] T. A. Davis, Algorithm 832: UMFPACK v4.3 — an unsymmetric-pattern multifrontal method,759
ACM Trans. Math. Softw., 30 (2004), pp. 196–199, https://doi.org/10.1145/992200.992206.760

[6] T. A. Davis, Direct methods for sparse linear systems, vol. 2, SIAM, 2006.761
[7] T. DeVries, The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over762

the industrial era, Global Biogeochem. Cycles, 28 (2014), pp. 631–647, https://doi.org/10.763
1002/2013GB004739.764

[8] T. DeVries, C. Deutsch, P. A. Rafter, and F. Primeau, Marine denitrification rates765
determined from a global 3-D inverse model, Biogeosciences, 10 (2013), pp. 2481–2496,766
https://doi.org/10.5194/bg-10-2481-2013.767

[9] T. DeVries and F. Primeau, Dynamically and observationally constrained estimates of water-768
mass distributions and ages in the global ocean, J. Phys. Oceanogr., 41 (2011), pp. 2381–769
2401, https://doi.org/10.1175/JPO-D-10-05011.1.770

[10] T. DeVries and T. Weber, The export and fate of organic matter in the ocean: New con-771
straints from combining satellite and oceanographic tracer observations, Global Biogeo-772
chemical Cycles, 31 (2017), pp. 535–555, https://doi.org/10.1002/2016GB005551.773

[11] H. A. Dijkstra and W. Weijer, Stability of the global ocean circulation: Basic bifurcation774
diagrams, Journal of Physical Oceanography, 35 (2005), pp. 933–948, https://doi.org/10.775
1175/JPO2726.1.776

[12] J. Fike and J. Alonso, The development of hyper-dual numbers for exact second-derivative777
calculations, in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum778
and Aerospace Exposition, 2011, p. 886.779

[13] J. A. Fike and J. J. Alonso, Automatic differentiation through the use of hyper-dual num-780
bers for second derivatives, in Recent Advances in Algorithmic Differentiation, S. Forth,781
P. Hovland, E. Phipps, J. Utke, A. Walther, T. J. Barth, M. Griebel, D. E. Keyes,782
R. M. Nieminen, D. Roose, and T. Schlick, eds., vol. 87 of Lecture Notes in Compu-783
tational Science and Engineering, Springer Berlin Heidelberg, 2012, pp. 163–173, https:784
//doi.org/10.1007/978-3-642-30023-3 15.785

[14] J. A. Fike, S. Jongsma, J. J. Alonso, and E. van der Weide, Optimization with gradient786
and Hessian information calculated using hyper-dual numbers, in AIAA paper 2011-3807,787
29th AIAA Applied Aerodynamics Conference, 2011.788

[15] M. Frants, M. Holzer, T. DeVries, and R. Matear, Constraints on the global marine iron789
cycle from a simple inverse model, Journal of Geophysical Research: Biogeosciences, 121790
(2016), pp. 28–51, https://doi.org/10.1002/2015jg003111.791

[16] H. E. Garcia, K. Weathers, C. R. Paver, I. Smolyar, T. P. Boyer, R. A. Locarnini,792
M. M. Zweng, A. V. Mishonov, O. K. Baranova, D. Seidov, and J. R. Reagan,793
World Ocean Atlas 2018, Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate794
and nitrate+nitrite, silicate) (in preparation). A. Mishonov Technical Ed.795

This manuscript is for review purposes only.

https://doi.org/10.1029/1999GB001216
https://doi.org/10.1016/j.ocemod.2013.09.008
https://doi.org/10.1016/j.ocemod.2013.09.008
https://doi.org/10.1016/j.ocemod.2013.09.008
https://doi.org/10.1137/141000671
https://doi.org/10.1145/992200.992206
https://doi.org/10.1002/2013GB004739
https://doi.org/10.1002/2013GB004739
https://doi.org/10.1002/2013GB004739
https://doi.org/10.5194/bg-10-2481-2013
https://doi.org/10.1175/JPO-D-10-05011.1
https://doi.org/10.1002/2016GB005551
https://doi.org/10.1175/JPO2726.1
https://doi.org/10.1175/JPO2726.1
https://doi.org/10.1175/JPO2726.1
https://doi.org/10.1007/978-3-642-30023-3_15
https://doi.org/10.1007/978-3-642-30023-3_15
https://doi.org/10.1007/978-3-642-30023-3_15
https://doi.org/10.1002/2015jg003111


D
R
A
FT

THE F-1 ALGORITHM 21

[17] W. W. Hager and H. Zhang, Algorithm 851: CG DESCENT, a Conjugate Gradient Method796
with Guaranteed Descent, ACM Trans. Math. Softw., 32 (2006), pp. 113–137, https://doi.797
org/10.1145/1132973.1132979.798

[18] C. T. Kelley, Iterative Methods for Optimization, Frontiers in Applied Mathematics, Society799
for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia,800
PA 19104), 1999.801

[19] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, 2003, ch. 1. Intro-802
duction, pp. 1–25, https://doi.org/10.1137/1.9780898718898.ch1.803

[20] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, 2003, ch. 2. Find-804
ing the Newton Step with Gaussian Elimination, pp. 27–55, https://doi.org/10.1137/1.805
9780898718898.ch2.806

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,807
Science, 220 (1983), pp. 671–680, https://doi.org/10.1126/science.220.4598.671.808

[22] O. Kolditz and H.-J. Diersch, Quasi-steady-state strategy for numerical simulation of809
geothermal circulation in hot dry rock fractures, International Journal of Non-Linear Me-810
chanics, 28 (1993), pp. 467–481, https://doi.org/10.1016/0020-7462(93)90020-L.811

[23] I. Kriest and A. Oschlies, On the treatment of particulate organic matter sinking in large-812
scale models of marine biogeochemical cycles, Biogeosciences, 5 (2008), pp. 55–72, https:813
//doi.org/10.5194/bg-5-55-2008.814

[24] E. Y. Kwon and F. Primeau, Sensitivity and optimization study of a biogeochemistry ocean815
model using an implicit solver and in-situ phosphate data, Global Biogeochem. Cycles, 20816
(2006), GB4009, https://doi.org/10.1029/2005GB002631.817

[25] E. Y. Kwon and F. Primeau, Optimization and sensitivity of a global biogeochemistry ocean818
model using combined in situ DIC, alkalinity, and phosphate data, Journal of Geophysical819
Research: Oceans, 113 (2008), https://doi.org/10.1029/2007JC004520. C08011.820

[26] X. Li and F. W. Primeau, A fast Newton–Krylov solver for seasonally varying global ocean821
biogeochemistry models, Ocean Modelling, 23 (2008), pp. 13–20, https://doi.org/10.1016/822
j.ocemod.2008.03.001.823

[27] J. H. Manton, Differential Calculus, Tensor Products and the Importance of Notation, ArXiv824
e-prints, (2012), https://arxiv.org/abs/1208.0197v2, https://arxiv.org/abs/1208.0197.825

[28] J. W. Martin, G. A. Knauer, D. M. Karl, and W. W. Broenkow, VERTEX: Carbon826
cycling in the NE Pacific, Deep-Sea Research, 34 (1987), pp. 267–285.827

[29] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso, The complex-step derivative approxima-828
tion, ACM Trans. Math. Softw., 29 (2003), pp. 245–262, https://doi.org/10.1145/838250.829
838251.830

[30] P. K. Mogensen and A. N. Riseth, Optim: A mathematical optimization package for Julia,831
Journal of Open Source Software, 3 (2018), p. 615, https://doi.org/10.21105/joss.00615.832

[31] P. K. Mogensen, J. M. White, A. N. Riseth, T. Holy, M. Lubin, C. Stocker, A. Levitt,833
C. Ortner, B. Johnson, A. Noack, Y. Yu, K. Carlsson, D. Lin, T. R. Covert,834
R. Rock, J. Regier, B. Kuhn, A. Williams, Ryan, K. Sato, D. Smith, R. Ananthara-835
man, M. Gomez, J. Revels, I. Dunning, D. MacMillen, C. Rackauckas, B. Legat,836
and A. Stukalov, JuliaNLSolvers/Optim.jl: Bugfix for Fminbox, better docs, and exper-837
imental maximize function, Sept. 2018, https://doi.org/10.5281/zenodo.1412092.838

[32] J. Monod, Microbiologie: Recherches sur la croissance des cultures bactériennes. I, Actualités839
scientifiques et industrielles, Hermann & cie, 1942.840

[33] J. Moore, S. C. Doney, J. A. Kleypas, D. M. Glover, and I. Y. Fung, An intermedi-841
ate complexity marine ecosystem model for the global domain, Deep Sea Research Part842
II: Topical Studies in Oceanography, 49 (2001), pp. 403 – 462, https://doi.org/10.1016/843
S0967-0645(01)00108-4. The US JGOFS Synthesis and Modeling Project: Phase 1.844

[34] J. K. Moore and O. Braucher, Sedimentary and mineral dust sources of dissolved iron845
to the world ocean, Biogeosciences, 5 (2008), pp. 631–656, https://doi.org/10.5194/846
bg-5-631-2008.847

[35] J. K. Moore, S. C. Doney, and K. Lindsay, Upper ocean ecosystem dynamics and iron cycling848
in a global three-dimensional model, Global Biogeochem. Cycles, 18 (2004), GB4028, https:849
//doi.org/10.1029/2004GB002220.850

[36] J. A. Nelder and R. Mead, A simplex method for function minimization, The Computer851
Journal, 7 (1965), pp. 308–313, https://doi.org/10.1093/comjnl/7.4.308.852

[37] M. Neuenhofen, Review of theory and implementation of hyper-dual numbers for first and853
second order automatic differentiation, CoRR, abs/1801.03614 (2018), http://arxiv.org/854
abs/1801.03614, https://arxiv.org/abs/1801.03614.855

[38] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media,856
2006.857

This manuscript is for review purposes only.

https://doi.org/10.1145/1132973.1132979
https://doi.org/10.1145/1132973.1132979
https://doi.org/10.1145/1132973.1132979
https://doi.org/10.1137/1.9780898718898.ch1
https://doi.org/10.1137/1.9780898718898.ch2
https://doi.org/10.1137/1.9780898718898.ch2
https://doi.org/10.1137/1.9780898718898.ch2
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/0020-7462(93)90020-L
https://doi.org/10.5194/bg-5-55-2008
https://doi.org/10.5194/bg-5-55-2008
https://doi.org/10.5194/bg-5-55-2008
https://doi.org/10.1029/2005GB002631
https://doi.org/10.1029/2007JC004520
https://doi.org/10.1016/j.ocemod.2008.03.001
https://doi.org/10.1016/j.ocemod.2008.03.001
https://doi.org/10.1016/j.ocemod.2008.03.001
https://arxiv.org/abs/1208.0197v2
https://arxiv.org/abs/1208.0197
https://doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://doi.org/10.21105/joss.00615
https://doi.org/10.5281/zenodo.1412092
https://doi.org/10.1016/S0967-0645(01)00108-4
https://doi.org/10.1016/S0967-0645(01)00108-4
https://doi.org/10.1016/S0967-0645(01)00108-4
https://doi.org/10.5194/bg-5-631-2008
https://doi.org/10.5194/bg-5-631-2008
https://doi.org/10.5194/bg-5-631-2008
https://doi.org/10.1029/2004GB002220
https://doi.org/10.1029/2004GB002220
https://doi.org/10.1029/2004GB002220
https://doi.org/10.1093/comjnl/7.4.308
http://arxiv.org/abs/1801.03614
http://arxiv.org/abs/1801.03614
http://arxiv.org/abs/1801.03614
https://arxiv.org/abs/1801.03614


D
R
A
FT

22 B. PASQUIER AND F. PRIMEAU

[39] B. Pasquier, DualMatrixTools: A Julia package for solving dual-valued linear systems, Nov.858
2018, https://doi.org/10.5281/zenodo.1493571.859

[40] B. Pasquier, HyperDualMatrixTools: A Julia package for solving hyperdual-valued linear sys-860
tems, Nov. 2018, https://doi.org/10.5281/zenodo.1670841.861

[41] B. Pasquier, AIBECS.jl: The ideal tool for exploring global marine biogeochemical cycles,862
May 2019, https://doi.org/10.5281/zenodo.2864051.863

[42] B. Pasquier, F1Method.jl: A julia package for computing the gradient and Hessian of an864
objective function defined implicitly by the solution to a steady-state problem, May 2019,865
https://doi.org/10.5281/zenodo.2667835.866

[43] B. Pasquier, Worldoceanatlastools.jl: Download and process world ocean data in julia, May867
2019, https://doi.org/10.5281/zenodo.2677666.868

[44] B. Pasquier and M. Holzer, Inverse-model estimates of the ocean’s coupled phosphorus,869
silicon, and iron cycles, Biogeosciences, 14 (2017), pp. 4125–4159, https://doi.org/10.5194/870
bg-14-4125-2017.871

[45] C. Rackauckas and Q. Nie, Differentialequations.jl – a performant and feature-rich ecosystem872
for solving differential equations in julia, Journal of Open Research Software, 5 (2017),873
https://doi.org/10.5334/jors.151.874

[46] J. A. Raven and P. G. Falkowski, Oceanic sinks for atmospheric CO2, Plant, Cell & Envi-875
ronment, 22 (1999), pp. 741–755, https://doi.org/10.1046/j.1365-3040.1999.00419.x.876

[47] J. Revels, T. Besard, M. J. Innes, R. Deits, M. Piibeleht, M. Schauer, L. White, and877
K. Fischer, Cassette.jl, Jan. 2019, https://doi.org/10.5281/zenodo.2549715.878

[48] J. Revels, M. Lubin, and T. Papamarkou, Forward-mode automatic differentiation in julia,879
arXiv:1607.07892 [cs.MS], (2016), https://arxiv.org/abs/1607.07892.880

[49] M. P. Rumpfkeil and D. J. Mavriplis, Efficient hessian calculations using automatic differen-881
tiation and the adjoint method with applications, AIAA Journal, 48 (2010), pp. 2406–2417,882
https://doi.org/10.2514/1.J050451.883

[50] G. A. Schmidt and L. A. Mysak, Can increased poleward oceanic heat flux explain the warm884
cretaceous climate?, Paleoceanography, 11 (1996), pp. 579–593, https://doi.org/10.1029/885
96PA01851.886

[51] D. Sivia and J. Skilling, Data analysis: a Bayesian tutorial, OUP Oxford, 2006.887
[52] Y. Teng, F. W. Primeau, J. K. Moore, M. W. Lomas, and A. Martiny, Global-scale888

variations of the ratios of carbon to phosphorus in exported marine organic matter, Nature889
Geosci., 7 (2014), pp. 895–898, https://doi.org/10.1038/NGEO2303.890

[53] G. Venter, Review of optimization techniques, Encyclopedia of aerospace engineering, (2010).891
[54] T. Volk and M. Hoffert, Ocean carbon pumps: analysis of relative strengths and efficiencies892

in ocean-driven atmospheric CO2 changes., American Geophysical Union; Geophysical893
Monograph 32, 1985, pp. 99–110.894

[55] W.-L. Wang, C. Lee, and F. W. Primeau, A bayesian statistical approach to inferring particle895
dynamics from in-situ pump poc and chloropigment data from the mediterranean sea,896
Marine Chemistry, (2019), https://doi.org/10.1016/j.marchem.2019.04.006.897

[56] W. Yu and M. Blair, DNAD, a simple tool for automatic differentiation of Fortran codes898
using dual numbers, Computer Physics Communications, 184 (2013), pp. 1446–1452, https:899
//doi.org/10.1016/j.cpc.2012.12.025.900

This manuscript is for review purposes only.

https://doi.org/10.5281/zenodo.1493571
https://doi.org/10.5281/zenodo.1670841
https://doi.org/10.5281/zenodo.2864051
https://doi.org/10.5281/zenodo.2667835
https://doi.org/10.5281/zenodo.2677666
https://doi.org/10.5194/bg-14-4125-2017
https://doi.org/10.5194/bg-14-4125-2017
https://doi.org/10.5194/bg-14-4125-2017
https://doi.org/10.5334/jors.151
https://doi.org/10.1046/j.1365-3040.1999.00419.x
https://doi.org/10.5281/zenodo.2549715
https://arxiv.org/abs/1607.07892
https://doi.org/10.2514/1.J050451
https://doi.org/10.1029/96PA01851
https://doi.org/10.1029/96PA01851
https://doi.org/10.1029/96PA01851
https://doi.org/10.1038/NGEO2303
https://doi.org/10.1016/j.marchem.2019.04.006
https://doi.org/10.1016/j.cpc.2012.12.025
https://doi.org/10.1016/j.cpc.2012.12.025
https://doi.org/10.1016/j.cpc.2012.12.025

	Introduction
	Theory
	Analytical formulas
	The F-1 algorithm

	Implementation
	Algorithms for the gradient and Hessian
	F-1 algorithm
	Other algorithms

	Phosphorus cycling model
	Optimizer

	Results
	Optimized model
	Benchmarks

	Conclusions
	Discussion
	Acknowledgments
	References

