Exploring iron control on global productivity: "FePSi", an inverse model of the ocean's coupled phosphorus, silicon and iron cycles.

Benoît Pasquier - Ph.D. student

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

poor circulation

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

data-assimilated steady circulation matrix [Primeau et al., 2013]

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

- data-assimilated steady circulation matrix [Primeau et al., 2013]
- Highly efficient numerics (matrix form + Newton solver [Kelley,2003])

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

- data-assimilated steady circulation matrix [Primeau et al., 2013]
- \blacksquare Highly efficient numerics (matrix form + Newton solver [Kelley,2003])

Science questions:

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

- data-assimilated steady circulation matrix [Primeau et al., 2013]
- \blacksquare Highly efficient numerics (matrix form + Newton solver [Kelley,2003])

Science questions:

1. Can we constrain the BGC parameters of the nutrient cycles?

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

- data-assimilated steady circulation matrix [Primeau et al., 2013]
- Highly efficient numerics (matrix form + Newton solver [Kelley,2003])

Science questions:

- 1. Can we constrain the BGC parameters of the nutrient cycles?
- 2. How do global nutrient cycles respond to perturbations in dFe?

Global biogeochemical (BGC) models can simulate mechanistic nutrient cycles, but they often have low fidelity to observations:

- poor circulation
- poorly constrained parameters
- hard to improve (high computation expenses)

FePSi can be used as an inverse model:

- data-assimilated steady circulation matrix [Primeau et al., 2013]
- Highly efficient numerics (matrix form + Newton solver [Kelley,2003])

Science questions:

- 1. Can we constrain the BGC parameters of the nutrient cycles?
- 2. How do global nutrient cycles respond to perturbations in dFe?
- 3. Can we test the $Si(OH)_4$ leakage hypothesis?

In the real world:

complex ecosystem

- complex ecosystem
- many species

- complex ecosystem
- many species
- many nutrients

- complex ecosystem
- many species
- many nutrients
- complex mechanisms:
 - uptake
 - particle sinking
 - scavenging

In the real world:

- complex ecosystem
- many species
- many nutrients
- complex mechanisms:
 - uptake
 - particle sinking
 - scavenging

In the real world:

- complex ecosystem
- many species
- many nutrients
- complex mechanisms:
 - uptake
 - particle sinking
 - scavenging

This means global BGC models struggle with:

costly simulations

In the real world:

- complex ecosystem
- many species
- many nutrients
- complex mechanisms:
 - uptake
 - particle sinking
 - scavenging

- costly simulations
- many parameters

In the real world:

- complex ecosystem
- many species
- many nutrients
- complex mechanisms:
 - uptake
 - particle sinking
 - scavenging

- costly simulations
- many parameters
- poor constraints on parameters

In the real world:

- complex ecosystem
- many species
- many nutrients
- complex mechanisms:
 - uptake
 - particle sinking
 - scavenging

- costly simulations
- many parameters
- poor constraints on parameters
- lack of data (iron)

Simplified biological cycling, b

- 3 nutrients
- 3 phytoplankton classes (not transported)
- No zooplankton

Galbraith et al., 2010; Matsumoto et al., 2013

$$\blacksquare$$
 dFe = dFe' + dFeL

séa floor

séa floor

- \blacksquare dFe = dFe' + dFe_L
- Chemical equilibrium with L (constant K_L)

séa floor

- \blacksquare dFe = dFe' + dFeL
- Chemical equilibrium with L (constant K_L)
- 3 sources of dFe':

séa floor

Frants et al., 2004; Frants et al., 2016

Chemical equilibrium with L

- \blacksquare dFe = dFe' + dFeL
- Chemical equilibrium with L (constant K_L)
- 3 sources of dFe':
 - Aeolian
 - Hydrothermal
 - Sedimentary

- \blacksquare dFe = dFe' + dFe_L
- Chemical equilibrium with L (constant K_L)
- 3 sources of dFe':
 - Aeolian
 - Hydrothermal
 - Sedimentary
- 2 sinks of dFe':
 - Scavenging onto sinking particles (organic and inorganic)

- \blacksquare dFe = dFe' + dFe_L
- Chemical equilibrium with L (constant K_L)
- 3 sources of dFe':
 - Aeolian
 - Hydrothermal
 - Sedimentary
- 2 sinks of dFe':
 - Scavenging onto sinking particles (organic and inorganic)
 - Precipitation

Discretized PDE

Discretized PDE

■ The tracer equation is $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x})$, where \mathbf{x} represents the (3-dimensional) concentration fields of the 3 nutrients, rearranged into a single column vector of size $n \sim 600,000$

- The tracer equation is $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x})$, where \mathbf{x} represents the (3-dimensional) concentration fields of the 3 nutrients, rearranged into a single column vector of size $n \sim 600,000$
- The function **f** combines the physical transport

- The tracer equation is $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x})$, where \mathbf{x} represents the (3-dimensional) concentration fields of the 3 nutrients, rearranged into a single column vector of size $n \sim 600,000$
- The function f combines the physical transport, the biologic cycling (and biogenic transport) b

- The tracer equation is $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x})$, where \mathbf{x} represents the (3-dimensional) concentration fields of the 3 nutrients, rearranged into a single column vector of size $n \sim 600,000$
- The function **f** combines the physical transport, the biologic cycling (and biogenic transport) **b**, and the external iron sources and sinks

- The tracer equation is $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x})$, where \mathbf{x} represents the (3-dimensional) concentration fields of the 3 nutrients, rearranged into a single column vector of size $n \sim 600,000$
- The function **f** combines the physical transport, the biologic cycling (and biogenic transport) **b**, and the external iron sources and sinks

$$\mathbf{f}(\mathbf{x}) = -\begin{bmatrix} \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \end{bmatrix} \mathbf{x} + \sum_{c} \begin{bmatrix} \mathbf{b}_{c}^{\mathsf{P}} \\ \mathbf{b}_{c}^{\mathsf{Si}} \\ \mathbf{b}_{c}^{\mathsf{Fe}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{s}_{\mathsf{A}} + \mathbf{s}_{\mathsf{H}} + \mathbf{s}_{\mathsf{S}} + \mathbf{j}_{\mathsf{sc}} \end{bmatrix}$$

lacktriangle We solve the steady state equation $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ using Newton's Method

Model Parameters: (p_i)

```
Model Parameters: (p_i)
          simulate
     (solve f(x) = 0)
Modeled Data: \mathbf{x}_{mod}(p_i)
       • PO<sub>4</sub>
       • Si(OH)<sub>4</sub>
       • dFe
```


Chosing appropriate weights w, we build an objective function of the quadratic concentration mismatch:

$$c(p_i) = (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})^{\mathsf{T}} \mathrm{diag}(\mathbf{w}) (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})$$

■ Chosing appropriate weights w, we build an objective function of the quadratic concentration mismatch:

$$c(p_i) = (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})^{\mathsf{T}} \mathrm{diag}(\mathbf{w}) (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})$$

■ Chosing appropriate weights w, we build an objective function of the quadratic concentration mismatch:

$$c(p_i) = (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})^{\mathsf{T}} \mathrm{diag}(\mathbf{w}) (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})$$

optimisation only possible with efficient simulation

- Biological parameters (optimized):
 - lacksquare Uptake rate timescale au
 - Phytoplankton populations P_{dia}^* , P_{lrg}^* , and P_{sml}^*
 - \blacksquare (Fe:P) uptake ratio: $R_{\rm f:p}$ and $k_{\rm f:p}$
 - lacksquare (Si:P) uptake ratio: (Si:P)_{min}, k_1 , k_2 , and k_3

- Biological parameters (optimized):
 - lacksquare Uptake rate timescale au
 - Phytoplankton populations $P_{\rm dia}^*$, $P_{\rm lrg}^*$, and $P_{\rm sml}^*$
 - lacktriangle (Fe:P) uptake ratio: $R_{\mathsf{f:p}}$ and $k_{\mathsf{f:p}}$
 - (Si:P) uptake ratio: (Si:P)_{min}, k_1 , k_2 , and k_3
- Iron sources and sinks (optimized for family of σ_A):
 - lacksquare Sedimentary source strength σ_{S}
 - Hydrothermal source strengths $\sigma_{\rm H}^{\rm PAC}$, $\sigma_{\rm H}^{\rm ATL}$, $\sigma_{\rm H}^{\rm IND}$, and $\sigma_{\rm H}^{\rm SO}$
 - \blacksquare Organic scavenging strength $\kappa^{\rm org}$ and profile shape β
 - \blacksquare Inorganic scavenging by ballast particles f_{\min}

- Biological parameters (optimized):
 - lacksquare Uptake rate timescale au
 - Phytoplankton populations $P_{\rm dia}^*$, $P_{\rm lrg}^*$, and $P_{\rm sml}^*$
 - (Fe:P) uptake ratio: $R_{f:p}$ and $k_{f:p}$
 - (Si:P) uptake ratio: (Si:P)_{min}, k_1 , k_2 , and k_3
- Iron sources and sinks (optimized for family of σ_A):
 - lacksquare Sedimentary source strength σ_{S}
 - Hydrothermal source strengths $\sigma_{\rm H}^{\rm PAC}$, $\sigma_{\rm H}^{\rm ATL}$, $\sigma_{\rm H}^{\rm IND}$, and $\sigma_{\rm H}^{\rm SO}$
 - \blacksquare Organic scavenging strength $\kappa^{\rm org}$ and profile shape β
 - $lue{}$ Inorganic scavenging by ballast particles f_{\min}
- Non optimized (yet) parameters:
 - $\blacksquare \text{ Half-saturation rates: } k_{\mathsf{dia}}^{\mathsf{P}}, \ k_{\mathsf{dia}}^{\mathsf{Fe}}, \ k_{\mathsf{lrg}}^{\mathsf{P}}, \ k_{\mathsf{lrg}}^{\mathsf{Fe}}, \ k_{\mathsf{sml}}^{\mathsf{P}}, \ \mathsf{and} \ k_{\mathsf{sml}}^{\mathsf{Fe}}$
 - local recycling fractions: $\sigma_{\rm dia}$, $\sigma_{\rm lrg}$, and $\sigma_{\rm sml}$
 - lacksquare sinking particle profiles: $b_{
 m dia},\,b_{
 m lrg},\,{
 m and}\,\,b_{
 m sml},$
 - light harvesting efficiency: $\alpha_{\min}^{\text{chl}}$, $\alpha_{\max}^{\text{chl}}$, $\theta_{\min}^{\text{chl}}$, and $\theta_{\max}^{\text{chl}}$
 - lacktriangle ligand stability constant K_{L}

Climatological base state - mismatch joint PDF

Climatological base state - mismatch joint PDF

Climatological base state - iron profiles

Model with $\sigma_{\rm A} = 6 \, {\rm Gmol_{dFe}/\,yr}$

Climatological base state - limiting nutrients

Model with $\sigma_{\rm A}=6\,{\rm Gmol_{dFe}/\,yr}$

Climatological base state - limiting nutrients

Model with $\sigma_{\rm A} = 6 \, {\rm Gmol_{dFe}/\,yr}$

Nutrient Deficiencies for S, L, and D classes

Export production anomaly due to perturbed aeolian iron Phosphorus export Opal export

Export production anomaly due to perturbed aeolian iron Phosphorus export Opal export

1. Extract nutrient X's regenerated source: $\mathbf{s}_{\text{reg}}^{X} = \mathbf{S}_{\text{ex}}^{X} \mathbf{u}^{X}(\mathbf{x})$

- 1. Extract nutrient X's regenerated source: $\mathbf{s}_{\mathsf{reg}}^{\mathsf{X}} = \mathbf{S}_{\mathsf{ex}}^{\mathsf{X}} \mathbf{u}^{\mathsf{X}}(\mathbf{x})$
- 2. New linear equation: $(\partial_t + \mathbf{T} + \mathbf{L}_0)\mathbf{x}_{\mathsf{reg}} = \mathbf{s}_{\mathsf{reg}}^{\mathsf{X}}$

- 1. Extract nutrient X's regenerated source: $\mathbf{s}_{\mathsf{reg}}^{\mathsf{X}} = \mathbf{S}_{\mathsf{ex}}^{\mathsf{X}} \mathbf{u}^{\mathsf{X}}(\mathbf{x})$
- 2. New linear equation: $(\partial_t + \mathbf{T} + \mathbf{L}_0)\mathbf{x}_{\mathsf{reg}} = \mathbf{s}_{\mathsf{reg}}^{\mathsf{X}}$
- 3. Use Green function to propagate regenerated PO₄ from source on Ω_i :

$$(\partial_t + \mathbf{T} + \mathbf{L_0}) \mathbf{g}_{\mathsf{reg}}(t) = \mathbf{0}$$
 and $\mathbf{g}_{\mathsf{reg}}(\mathbf{0}) = \mathrm{diag}(\mathbf{s}_{\mathsf{reg}}^\mathsf{X}) \mathbf{\Omega}_i$

- 1. Extract nutrient X's regenerated source: $\mathbf{s}_{\mathsf{reg}}^{\mathsf{X}} = \mathbf{S}_{\mathsf{ex}}^{\mathsf{X}} \mathbf{u}^{\mathsf{X}}(\mathbf{x})$
- 2. New linear equation: $(\partial_t + \mathbf{T} + \mathbf{L}_0)\mathbf{x}_{\mathsf{reg}} = \mathbf{s}_{\mathsf{reg}}^\mathsf{X}$
- 3. Use Green function to propagate regenerated PO₄ from source on Ω_i :

$$(\partial_t + \mathbf{T} + \mathbf{L_0}) \mathbf{g}_{\text{reg}}(t) = \mathbf{0} \quad \text{ and } \quad \mathbf{g}_{\text{reg}}(\mathbf{0}) = \mathrm{diag}(\mathbf{s}_{\text{reg}}^{\mathsf{X}}) \mathbf{\Omega}_i$$

4. Use Adjoint Green function to propagate to reemergence on Ω_f :

$$(-\partial_t + \tilde{\mathbf{T}} + \mathbf{L}_0) \tilde{\underline{\mathcal{G}}}_{\mathsf{reg}}(t) = \mathbf{0}$$
 and $\tilde{\mathcal{G}}_{\mathsf{reg}}(0) = \mathbf{V} \mathbf{L}_0 \Omega_f$

- 1. Extract nutrient X's regenerated source: $\mathbf{s}_{\text{reg}}^{X} = \mathbf{S}_{\text{ex}}^{X} \mathbf{u}^{X}(\mathbf{x})$
- 2. New linear equation: $(\partial_t + \mathbf{T} + \mathbf{L}_0)\mathbf{x}_{\mathsf{reg}} = \mathbf{s}_{\mathsf{reg}}^\mathsf{X}$
- 3. Use Green function to propagate regenerated PO₄ from source on Ω_i :

$$(\partial_t + \mathbf{T} + \mathbf{L_0}) \mathbf{g}_{\text{reg}}(t) = \mathbf{0}$$
 and $\mathbf{g}_{\text{reg}}(\mathbf{0}) = \mathrm{diag}(\mathbf{s}_{\text{reg}}^{\mathbf{X}}) \mathbf{\Omega}_i$

4. Use Adjoint Green function to propagate to reemergence on Ω_f :

$$(-\partial_t + \tilde{\mathbf{T}} + \mathbf{L}_0) \underline{\tilde{\mathcal{G}}}_{\mathsf{reg}}(t) = \mathbf{0}$$
 and $\tilde{\mathcal{G}}_{\mathsf{reg}}(0) = \mathbf{V} \mathbf{L}_0 \Omega_f$

5. Compute by direct inversion:

$$\begin{split} \langle \mathbf{g}_{\mathsf{reg}} \rangle &= (\mathbf{T} + \mathbf{L}_0)^{-1} \mathrm{diag}(\mathbf{s}_{\mathsf{reg}}^{\mathsf{X}}) \mathbf{\Omega}_i \\ \langle \tilde{\boldsymbol{\mathcal{G}}}_{\mathsf{reg}} \rangle &= (\tilde{\mathbf{T}} + \mathbf{L}_0)^{-1} \mathbf{V} \mathbf{L}_0 \mathbf{\Omega}_f \end{split}$$

- 1. Extract nutrient X's regenerated source: $\mathbf{s}_{reg}^{X} = \mathbf{S}_{ex}^{X} \mathbf{u}^{X}(\mathbf{x})$
- 2. New linear equation: $(\partial_t + \mathbf{T} + \mathbf{L}_0)\mathbf{x}_{\mathsf{reg}} = \mathbf{s}_{\mathsf{reg}}^\mathsf{X}$
- 3. Use Green function to propagate regenerated PO₄ from source on Ω_i :

$$(\partial_t + \mathbf{T} + \mathbf{L}_0) \mathbf{g}_{\mathsf{reg}}(t) = \mathbf{0}$$
 and $\mathbf{g}_{\mathsf{reg}}(0) = \mathrm{diag}(\mathbf{s}_{\mathsf{reg}}^\mathsf{X}) \mathbf{\Omega}_i$

4. Use Adjoint Green function to propagate to reemergence on Ω_f :

$$(-\partial_t + ilde{\mathbf{T}} + \mathbf{L}_0) ilde{m{\mathcal{G}}}_{\mathsf{reg}}(t) = \mathbf{0} \quad ext{ and } \quad ilde{m{\mathcal{G}}}_{\mathsf{reg}}(0) = \mathbf{V} \mathbf{L}_0 \mathbf{\Omega}_f$$

5. Compute by direct inversion:

$$\langle \mathbf{g}_{\mathsf{reg}} \rangle = (\mathbf{T} + \mathbf{L}_0)^{-1} \mathrm{diag}(\mathbf{s}_{\mathsf{reg}}^{\mathsf{X}}) \mathbf{\Omega}_i$$

$$\langle \tilde{\mathbf{\mathcal{G}}}_{\mathsf{reg}} \rangle = (\tilde{\mathbf{T}} + \mathbf{L}_0)^{-1} \mathbf{V} \mathbf{L}_0 \mathbf{\Omega}_f$$

6. Combine into path density:

$$\langle \boldsymbol{\eta}_{\mathsf{reg}} \rangle = \langle \tilde{\boldsymbol{\mathcal{G}}}_{\mathsf{reg}} \rangle \odot \langle \mathbf{g}_{\mathsf{reg}} \rangle$$

(element-wise multiplication)

PD of regenerated PO₄ and Si(OH)₄ - base state

PD of regenerated PO₄ and Si(OH)₄ - base state

PD of regenerated PO_4 and $Si(OH)_4$ - anomaly

Globally reduced aeolian iron

Globally increased aeolian iron

PD of regenerated PO_4 and $Si(OH)_4$ - anomaly

Globally reduced aeolian iron

Globally increased aeolian iron

■ FePSi is the first inverse model coupling P, Si, and Fe cycles.

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:
 - GBL×10:

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:
 - GBL×10:
 - P-export increases everywhere

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:
 - GBL×10:
 - P-export increases everywhere
 - Si-export decreases outside SO \Rightarrow increased SO-trapping of Si

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:
 - GBL×10:
 - P-export increases everywhere
 - lacktriangle Si-export decreases outside SO \Rightarrow increased SO-trapping of Si
 - GBL×0.1 (leakage hypothesis):

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:
 - GBL×10:
 - P-export increases everywhere
 - lacktriangle Si-export decreases outside SO \Rightarrow increased SO-trapping of Si
 - GBL×0.1 (leakage hypothesis):
 - P-export decreases everywhere

- FePSi is the first inverse model coupling P, Si, and Fe cycles.
- \blacksquare It captures obs. macronutrients ($\Delta_{RMS}^{P}\sim5\text{--}9\%$ and $\Delta_{RMS}^{Si}\sim9\text{--}12\%)$
- It produces a qualitatively realistic dFe field (profiles)
- It can compute responses to aeolian iron perturbations:
 - GBL×10:
 - P-export increases everywhere
 - Si-export decreases outside SO \Rightarrow increased SO-trapping of Si
 - GBL×0.1 (leakage hypothesis):
 - P-export decreases everywhere
 - Si-export decreases in the SO \Rightarrow Release of Si \Rightarrow Si-export increases outside the SO

Questions?

Newton PDE solution

- lacksquare steady state: $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x}) = \mathbf{0}$
- use Newton's Method (generalized zero search) linear approximation:

$$\mathbf{f}(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_0) + \mathbf{D}\mathbf{f}(\mathbf{x}_0) \left(\mathbf{x}_1 - \mathbf{x}_0\right) + o\left(\|\mathbf{x}_1 - \mathbf{x}_0\|\right)$$

where \mathbf{Df} is the Jacobian, a $n \times n$ sparse matrix where $n \sim 600,000!$

To get $\mathbf{f}(\mathbf{x}_1) \sim \mathbf{0}$, we take

$$\mathbf{x}_1 = \mathbf{x}_0 - \mathbf{D}\mathbf{f}(\mathbf{x}_0)^{-1}\mathbf{f}(\mathbf{x}_0)$$

Kelley, 2003

Newton PDE solution

- lacksquare steady state: $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x}) = \mathbf{0}$
- use Newton's Method (generalized zero search) linear approximation:

$$\mathbf{f}(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_0) + \mathbf{D}\mathbf{f}(\mathbf{x}_0) \left(\mathbf{x}_1 - \mathbf{x}_0\right) + o\left(\|\mathbf{x}_1 - \mathbf{x}_0\|\right)$$

where \mathbf{Df} is the Jacobian, a $n \times n$ sparse matrix where $n \sim 600,000!$

To get $\mathbf{f}(\mathbf{x}_1) \sim \mathbf{0}$, we take

$$\mathbf{x}_1 = \mathbf{x}_0 - \mathbf{D}\mathbf{f}(\mathbf{x}_0)^{-1}\mathbf{f}(\mathbf{x}_0)$$

Kelley, 2003