Exploring iron control on global productivity:
“FePSi”, an inverse model of the ocean’s
coupled phosphorus, silicon and iron cycles.
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Global biogeochemical (BGC) models can simulate mechanistic nutrient
cycles, but they often have low fidelity to observations:

m poor circulation
m poorly constrained parameters

m hard to improve (high computation expenses)

FePSi can be used as an inverse model:
m data-assimilated steady circulation matrix [Primeau et al., 2013]
m Highly efficient numerics (matrix form + Newton solver [Kelley,2003])

Science questions:
1. Can we constrain the BGC parameters of the nutrient cycles?
2. How do global nutrient cycles respond to perturbations in dFe?
3. Can we test the Si(OH),4 leakage hypothesis?
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Nutrient cycle and coupling
. In the real world:
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dFe (aeolian)

B many species

® many nutrients
pLﬁﬁgp;mm = m complex mechanisms:

S m uptake
phytoplankton plankd m particle sinking
m scavenging

This means global BGC
models struggle with:

m costly simulations

® many parameters

B poor constraints on
parameters

m lack of data (iron)
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m 3 phytoplankton classes (not transported) ~ Galbraith et al., 2010;

= No zooplankton Matsumoto et al., 2013
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Simplified iron external source and sinks

m dFe=dFe’ +dFe.

m Chemical equilibrium with L
(constant K )
~ m 3 sources of dFe’:
= Aeolian

m Hydrothermal
m Sedimentary

m 2 sinks of dFe’:

m Scavenging onto sinking
particles (organic and
inorganic)

m Precipitation

_____________________

4

/ \ , ; Parekh et al., 2004;
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Discretized PDE

m The tracer equation is 9;x = f(x), where x represents the
(3-dimensional) concentration fields of the 3 nutrients, rearranged
into a single column vector of size n ~ 600,000

m The function f combines the physical transport, the biologic cycling
(and biogenic transport) b, and the external iron sources and sinks

transport (linear) biology (nonlinear)  sources and sinks (nonlinear)
T bF 0
f(x)=— T x 4+ Z b2 + 0
T - bLFte SA + SH + 85 + Jsc

m We solve the steady state equation f(x) = 0 using Newton's Method
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Objective parameter determination
Model Parameters: (p;) ¢————— optimise

simulate
(solve f(x) = 0)

l

inverse modeling step

Modeled Data: Xmod(p:) Observed Data: xqps
e POy, e POy
e Si(OH); ——— Compare =———> o Si(OH),
e dFe e dFe

m Chosing appropriate weights w, we build an objective function of the
quadratic concentration mismatch:

C(pi) = (Xmod - Xobs)Tdiag(W)(Xmod - Xobs)

m optimisation only possible with efficient simulation
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FePSi key parameters

m Biological parameters (optimized):

m Uptake rate timescale 7
Phytoplankton populations P}, P,
(Fe:P) uptake ratio: R, and ky.p
(Si:P) uptake ratio: (Si: P)min, k1, k2, and k3

m Iron sources and sinks (optimized for family of oa):

and P*

sml

*
rg!’

m Sedimentary source strength og

= Hydrothermal source strengths oFAC,afi™,0lNP, and oP°
= Organic scavenging strength x°® and profile shape 3
= Inorganic scavenging by ballast particles fmin
m Non optimized (yet) parameters:
= Half-saturation rates: kf,, ke, k3., kip, KfS, kb, and Kl

local recycling fractions: 0gia, Oirg, and osm

sinking particle profiles: bgia, birg, and bsm,

light harvesting efficiency: o<l oSt gt “and gt
ligand stability constant K|
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Path densities of regenerated nutrients

1. Extract nutrient X's regenerated source: ség = SX u¥(x)

New linear equation: (0 + T + Lg)Xreg = sﬁ(eg

3. Use Green function to propagate regenerated PO, from source on €;:
(0 +T+Lo)ges(t) =0  and  greg(0) = diag(ség)ﬂi
4. Use Adjoint Green function to propagate to reemergence on {2;:
(=0 + T+Lo)Greg(t) =0  and  Greg(0) = VLo

5. Compute by direct inversion:

(ee) = (T + Lo) " ding(s%,);
(Gree) = (T +Lo) VLo,

aterior

6. Combine into path density:

(Mreg) = (Greg) © (Lreg) (element-wise multiplication)
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Conclusions

FePSi is the first inverse model coupling P, Si, and Fe cycles.
It captures obs. macronutrients (AR ~5-9% and ARls ~9-12%)
It produces a qualitatively realistic dFe field (profiles)

It can compute responses to aeolian iron perturbations:
= GBLx10:
m P-export increases everywhere
m Si-export decreases outside SO = increased SO-trapping of Si
m GBLx0.1 (leakage hypothesis):
m P-export decreases everywhere

B Si-export decreases in the SO = Release of Si = Si-export increases
outside the SO
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linear approximation:
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m steady state: Ox =f(x) =0

m use Newton's Method (generalized zero search)
linear approximation:

f(x1) = f(x0) + Df(x0) (x1 — X0) + 0 ([|x1 — Xol|)
A . .
? § § where Df is the Jacobian,
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