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“All models are wrong”

— George Box, in a 1976 paper published in the Journal of the

American Statistical Association George Box
1919—2013

“All models are wrong, but some
are useful”

— George Box, In the proceedings of a 19/8 statistics workshop

“Box models are useful despite
being approximations”

— Benoit Pasquier, in a 2018 presentation at the Francois Primeau
group meeting



From a single-box model...

input (or external source) ‘

,

local Sources Minus Sinks

output



to a two-boxes model...
¢in




to 3D models with many boxes

where boxes exchange tracers with each

other (not only neighbors). ﬁ




We have global models that cover the entire
earth with a grid...
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Proof of the existence of such grids can be
seen Iin the photograph below:




More seriously, the awesome OCIM (Ocean
Circulation Inverse Model) provide the advective-
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More seriously, the awesome OCIM (Ocean
Circulation Inverse Model) provide the advective-
diffusive transport on such global 3D grids.

The ocean circulation is described by the transport operator, 7T :

T =V-ulV- -KV

advection diffusion

We extensively use 7 in the tracer equation

0
(a + T> X =|SMS(x)| local Sources Minus Sinks

OCIM provide a matrix T that corresponds to
the discrete version of T ~ OCIM

?HT transport
— —  matrix

continuous advection and diffusion



We thus have a discrete version of the tracer equation:

(% + T) x = SMS(x)

which we can rearrange into

00X

where f(x) = —Tx + SMS(x)

Because | am looking for a useful (although wrong) model,
| assume steady state, so that | am looking for X such that

f(x) =0



Why is OCIM awesome?

f(x) = —Tx + SMS(x)

so if SMS(x) is affine, then f is affine...

af-fine
/a'fin, afin/ 4

adjective MATHEMATICS

1. allowing for or preserving parallel relationships. f(X) — MX —+ b

noun ANTHROPOLOGY

1. arelative by marriage.

And if f is affine, then finding f(x) = O is very easy:

x=-M7'b o XxX=-M\b; inMATLAB



Example: the ideal mean age of water, x.

f(x) =|—-Tx|H1|[-|Dsx/T

advection and diffusion
increasing age (one second per second)

The age at the surface is quickly relaxed to zero
D, is a diagonal matrix of 1’s in the surface only
and T is a fast restoring timescale (e.g., T = 159).

The solutionis x = — M b

where Ml = —T — D_/T

Computation time: a few seconds on my laptop!



Why is OCIM awesome?

f(x) = —Tx + SMS(x)

If SMS(x)is not affine, then f is not affine either

(most people say that f is nonlinear - including me) 1643—1rar

But we can use Newton’s method!

of 17
Xn+1 — Xn Ix (Xn) f(Xn>

because we want f(x,11) = 0 and because

£ 1) 2 £x0) + | 506 | (xnst — o)
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Example: the silicate concentration, X.

f(x) =|-TxH|(S —1)(x — }(Obs)jup/Tres — (X — EObS) /Teeo

Advection and diffusion

Biological uptake and remineralization at depth,

where S is the particle flux divergence.

x°P% is the observed Si(OH)s4 concentration

Tros ~ 30 days

This term reproduces the biological pump mechanism.

The geological restoring term,
which slowly restores the global inventory.

Toeo = 10° years

x°P% ~ 92 UM is the mean observed Si(OH)s concentration

Computation time: a few minutes on my laptop!



Why is OCIM awesome?

Because OCIM affords
very fast computations!

OK... But is it useful for anything in particular?

Yes: OCIM allows
parameter optimization!

Wait a minute... What parameters?



Optimization example: the Si cycle
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Optimization example: the Si cycle

F06) = ~Tx {8 = 1) = X)) | (5 = 5) /e

| —<
Advection and diffusion  Biological pump Geological restoring
There are some optimizable parameters,p = (,01 . ,,On).

So now f (p, X) depends on those parameters.

We want to minimize the error of our estimate when
we compare it to observations, so we build a cost
function that represents this error by a scalar:

C(X) _ 6XTV5X RN /dSI, (Xmod _XobS)Z

where 6x = x — x°"® is the mismatch with observations,

and V is a diagonal matrix of the volumes of the grid boxes.



Optimization example: the Si cycle

steady state solution
x(p)

parameter values

p=(p1,...,Pn)

Cost function

c(x(p)) = C(p)
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Optimization example: the Si cycle

/\ This estimate depends
Find x such that f(p,x) =0 on the parameters

e.g., using Newton’s metho steady state solution
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Optimization example: the Si cycle

/\ This estimate depends
Find x such that f(p,x) =0 on the parameters

e.g., using Newton’s metho steady state solution
(nsold.m) x(p)

/

parameter values

— (1, -,Pn)

Compare to observations

Optimi t Cost function
plimiZe parameters C(X(p)) :‘C(p)‘

(e.g., fmi1nunc.m)

\/ This is the cost function

used by the optimizer




Some notes on Newton’s method

Newton’s method requires the computation of the
Jacobian of £ with respect to x.

This can be done in many ways:

Analytically:
e that is, write the code for the Jacobian (fast and accurate)

numerically:

e using finite differences (slow and inaccurate)
e using the complex step method (fast, accurate)
e using algorithmic differentiation (fast, accurate)



Finite differences, CSD, and AD, example with Jacobian

Finite differences (what MATLAB uses internally)
of f(x+¢el) —x
ox >

(Abuse of notation here)

Complex Step Differentiation

of S [f(x + iEI)}

_ Y

9) I

Algorithmic Differentiation (A.K.A. automatic differentiation)

No formula, but calculates the derivatives at every line of
code that defines f (using the composition rule recursively).



Some notes on the optimization

The optimization of the parameters, p (e.g, using
MATLAB'’s fm1nunc), can go faster if you provide (I think):

e the Jacobian of C with respect to p
e the Hessian of C with respect to p

This can also be done (I think) in the ways mentioned before:

Analytically:
e that is, write the code for the Jacobian (fast and accurate)

numerically:

e using finite differences (slow and inaccurate)
e using the complex step method (fast, accurate)
e using algorithmic differentiation (fast, accurate)



Some more notes on the optimization

One can derive the Jacobian from the steady state equation...

of Of dx

Use the composition rule:

g B i{c(x( ))} - dc dx
dp dp B/ | = dx dp

And inject in the final result: /

dC _ dc of 7' of
dp  dx 0x Op




And even more notes on the optimization

One can derive the Hessian from the steady state solution too!

It is a bit more complicated, especially notation-wise... So this is
merely an attem pt to tackle It, and Francois may be able to explain it to us!

The composition rule for Hessian can be written as

d2C B d°c [dx . dx '\ C_C d?x| This one might
dp? T dx2 dp = dp | x| dp? be tough

12

d Already obs\ T

dx2 2V explained dx =2(x—x"")'V

CESY



And even more notes on the optimization (continued)

size: Nx X Np X Np

d2x —
— can be found from something like this
dp?
0°f  0°f [dx dx of d%x
f(p,x(p) =0 = I — ® — | 1 =
(P, x(p)) op? | 0% (dp dp> Ix dp?
AN 4
Alreac.:Iy Jacobian
explained for Newton
Could be full but smallish (easy!)

Is huge but should be sparse!
Ny X Ny X Ny

(would be zero anyway
iIn my example model)



BUt be reassured... fortuitous pun
You do not have to go the analytical way! /

Although it can probably save you a lot of time in the long run.

You can use the usual finite differences and let MATLAB'’s

built-in functions (fminsearch, fminunc, etc.) do all the
work.

You can use the complex step differentiation (CSD), but there is
a bit of work and some caveats (but | love it - much elegance).

And you can probably use the algorithmic differentiation (AD),
but | have not tried it myself, therefore | cannot recommend it.



