Here, we estimate the ocean's steady-state coupled phosphorus, silicon, and iron cycles using a new inverse model embedded in a data-assimilated circulation. The model features the redissolution of scavenged iron, a subgrid topography parameterization, and three phytoplankton functional classes. Phytoplankton concentrations are represented implicitly in the formulation of nutrient uptake. Efficient numerics allow us to optimize biogeochemical parameters against observations. Because iron sources are uncertain, largely due to poorly constrained scavenging, we generate a family of state estimates for a wide range of source strengths. All states have similar fidelity to the observations.
From our state estimates, we quantify the relative contribution of each iron source to export production. This is done non-invasively by labelling each iron type with a suitable passive tracer. We find that the phosphorus and opal exports are well constrained at 8.1±0.3 TmolP yr-1 and 171.±3. TmolSi yr-1. The exports supported by each iron type have well constrained patterns. Sedimentary iron supports export primarily in shelf and upwelling regions, while hydrothermal iron supports export mostly in the Southern Ocean. Per source-injected molecule, aeolian iron supports 3.1±0.8 times more phosphorus export and 2.0±0.5 times more opal export than the other iron types. Conversely, per injected molecule, sedimentary and hydrothermal iron support 2.3±0.6 and 4.±2. times less phosphorus export, and 1.9±0.5 and 2.±1. times less opal export than the other iron types.
- The efficiency of different iron sources in supporting the ocean's global biological pump Benoît Pasquier, Mark Holzer
UCI Half-baked seminar, Department of Earth System Science November 15, 2017 Irvine, California, USA - Response of the biological pump to perturbations in the iron supply: Global teleconnections diagnosed using an inverse model of the coupled phosphorus-silicon-iron nutrient cycles Benoît Pasquier, Mark Holzer
AMOS National Conference February 7, 2017 Canberra, Australia We construct a mechanistic inverse model of the ocean's coupled phosphorus, silicon, and iron cycles and analyze the response of the biological pump to perturbations in the iron supply. The nutrient cycles are embedded in a data-assimilated steady global ocean circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for three functional classes of phytoplankton. A matrix formulation of the discretized nutrient equations permits efficient numerical solutions that allow optimization of key biogeochemical parameters by minimizing the misfit between modelled and observed concentrations. We perturb the iron supply for a variety of scenarios and systematically quantify the teleconnections in nutrient utilization across the global ocean ecosystem. Specifically, Green-function techniques are used to quantify the transport pathways and timescales with which the perturbations in the nutrient fields are propagated, thus mediating the teleconnections. We find that carbon and opal export can have opposite responses to changes in the iron supply. For example, a globally uniform reduction in the aeolian iron input increases opal export outside of the Southern Ocean but decreases carbon export there. A path-density transport diagnostic applied to the nutrients shows that enhanced iron limitation can untrap silicon from the Southern Ocean and increase opal export outside of the Southern Ocean. However, enhanced iron limitation also leads to non-diatom phytoplankton exporting less carbon in the tropics and to an increase in the biomass fraction of diatoms, which increases the Si:C export ratio. In addition, we investigate the amplitudes of the iron perturbations necessary to eliminate iron limitation and the resulting changes in the patterns of macronutrient limitation.
- Exploring iron control on global productivity: "FePSi", an inverse model of the ocean's coupled phosphate, silicon and iron cycles Benoît Pasquier, Mark Holzer
Postgrad Conference June 8, 2016 Sydney, NSW, Australia "FePSi" is the first data-constrained mechanistic inverse model coupling the iron (Fe), phosphorus (P), and silicon (Si) oceanic cycles. The nutrient cycling is embedded ina data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for 3 classes of phytoplankton that are not transported explicitly. A sparse matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions using Newton's method, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between modeled and observed nutrients and chlorophyll fields. We explore the nonlinear, counterintuitive and asymmetric responses of the biological pump and nutrient cycles to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem.
- Iron Source Attribution and the Age of Dissolved Iron in the Ocean Mark Holzer, Marina Frants, Benoît Pasquier
Ocean Sciences Meeting February 23, 2016 New Orleans, Louisiana, USA We quantify the contributions of the aeolian, sediment, and hydrothermal iron sources to the concentration of dissolved iron (dFe) and calculate the mean age of these contributions since their injection into the ocean. Our calculations use estimates of the global iron cycle from a simple inverse model constrained by a data-assimilated global circulation and by available dFe measurements, including the GEOTRACES Intermediate Data Product. We compare our rigorously calculated source contributions with commonly employed source anomalies, i.e., the differences between solutions with and without the source in question. We find that such source anomalies strongly underestimate the true contribution from any given source (by as much as a factor of two for the hydrothermal source) because of the nonlinearity of the iron scavenging. Aeolian iron is the largest contributor in the Southern Ocean euphotic zone, where its mean age reveals that this iron is supplied from depth on average a few hundred years after deposition from the atmosphere. Hydrothermal and sedimentary iron each contribute roughly 20% to the total dFe concentration in the Southern Ocean euphotic zone. Hydrothermal iron tends to have the oldest surface ages except where hydrothermal sources occur near the surface where the scavenging rate is high. The systematics of the source contributions, iron ages, and iron-age distributions are quantified across a family of solutions with a range of aeolian source strengths, all of which are consistent with currently available dFe observations.
- Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate, silicon, and iron cycles Benoît Pasquier, Mark Holzer
Ocean Sciences Meeting February 22, 2016 New Orleans, Louisiana, USA We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.
- The plumbing of the global biological pump Benoît Pasquier, Mark Holzer
AMOS National Conference July 16, 2015 Brisbane, QLD, Australia We quantify the timescales and pathways that set the efficiency of the biological pump (the fraction of the phosphate inventory that is regenerated). We use a data-constrained phosphorus-cycling model embedded in a steady data-assimilated ocean circulation to quantify the pump's leaks of preformed phosphate, its sources of regenerated phosphate, and the pathways with which the combined biogenic particle transport and the water circulation teleconnect different regions of the global euphotic zone. These pathways are quantified by a path density, which is the concentration of phosphate that was last utilized in a region A and that will reemerge into the euphotic zone of a region B, partitioned according to the A–to–B transit-time. Suitable integrals of this path density, computed efficiently by direct matrix inversions, yield the phosphate mass in transit, its flow rate, and its residence time in the aphotic zone. We find that a pump efficiency of (39 ± 2)% has dominant contributions from the Eastern Equatorial Pacific (25 ± 1)%, from the Southern Ocean (SO) (21 ± 1)%, and from the Eastern Equatorial Atlantic (EEqA) (12 ± 1)%. The pump’s 61% leak originates predominantly in the SO (75%) and in the SubPolar North Atlantic (17%). While the SO euphotic zone is a large leak of preformed phosphate, it is also the major receptor of phosphate reemerging from depth: The SO euphotic zone is the destination of (62 ± 6)% of the regenerated inventory and of (69 ± 5)% of the preformed inventory. The mean interior residence time of regenerated phosphate reemerging in the SO depends on where it was last utilized: 69 ± 1 years if last utilized in the SO and 500 ± 20 years if last utilized outside the SO. The transit-time distribution of the mass of regenerated phosphate last taken up in the EEqA and reemerging in the SO euphotic zone is bimodal, pointing to two distinct pathways which are quantified using the phosphate path density.
- An efficient inverse model of the ocean's coupled nutrient cycles Benoît Pasquier, Mark Holzer
Postgrad Conference June 11, 2015 Sydney, NSW, Australia We construct a data-constrained model of the ocean's coupled macronutrient and micronutrient cycles. The model focuses initially on phosphate and dissolved iron. The nutrient cycling is embedded in a data-assimilated steady ocean circulation. Biological nutrient uptake is parameterized in terms of nutrient and physical limitations on plankton growth, without the need of tracers for the concentration of phytoplankton. The uptake parameterization is formulated using a novel, versatile functional form that is able to capture different plankton classes, both in terms of size and species. A matrix formulation of the discretized partial differential equations allows for very efficient solutions and facilitates the objective optimization of key model parameters by minimizing the mismatch with the observed global nutrient climatology. This approach matches observed phosphate and iron concentration with RMS errors of less than 10%. In the near future, the model will allow us to quantify the timescales and pathways with which perturbations in the iron supply are communicated throughout the world ocean's ecosystem. Including the ocean's silicon cycle will elucidate the role of diatoms in the biological pump and the sensitivity of elemental ratios to iron perturbations.
- Plumbing of the biological pump Benoît Pasquier, Mark Holzer
Postgrad Conference September 1, 2014 Sydney, NSW, Australia Nutrient transport and biological teleconnections of Ocean surface regions are diagnosed in a data-assimilated circulation model coupled to a jointly optimized simple phosphorus cycling model. These teleconnections paint the plumbing of the biological pump: phytoplankton takes up phosphate (PO4) in the euphotic layer, pumps it as dissolved organic phosphorus (DOP) through the whole water column, until it is remineralized in the ocean depths and ultimately transported to the surface where it is available again for uptake. The biological pump efficiency (39%) is redefined and computed. Ocean surface regions where biological production takes its origin are defined, out of which major contributors as well as biological leaks are determined: The high latitude ocean regions provide a large quantity of phosphate to other oceans, but contribute very lightly themselves to the biological pump. While the easternmost part of the tropical oceans produce large quantities of utilized phosphorus which is pumped for long average transit times. Using Green functions and adjoint techniques, flow rates, masses in transit, and timescales of biologically utilized nutrients between surface regions of interest are computed: the easternmost part of tropical ocean basins provide the majority of the biology, which reemerges predominantly in the high latitudes. Time-dependent path densities of major teleconnections are then computed, which paint a very detailed and quantitative picture of the phosphorus cycle within the ocean interior: paths associated with long transit times (>1000 yrs) spread through the entire ocean, but are concentrated in the deep Northernmost Pacific, while paths associated with short transit times (<500 yrs) are more localised, and restricted mostly to the surface currents.